HUMAN TRACKING USING PARTICLE FILTER BASED ON SWITCHING ADAPTIVE/NONADAPTIVE OBSERVATION MODEL

被引:0
作者
Horio, Keiichi [1 ]
Nagasakiya, Toutaro [1 ]
机构
[1] Kyushu Inst Technol, Grad Sch Life Sci & Syst Engn, 2-4 Hibikino, Kitakyushu, Fukuoka 8080196, Japan
来源
INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL | 2016年 / 12卷 / 03期
关键词
Human tracking; Particle filter; Switching observation model; Pose change; Occlusion;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we describe a human tracking method based on a particle filter with the switching observation model. During tracking humans in video scenes, occlusions and shape changes of target human often occur. Adaptive observation model in which the model is updated in every frame is effective for shape changes; however, it causes wrong tracking in occlusion scene. To realize robust tracking, switching observation model is introduced. In the method, adaptive observation is basically used, and the update of observation model is stopped when an occlusion occurs. To detect an occlusion, likelihoods are used. The model is applied to sonic datasets, and the effectiveness of the method is verified.
引用
收藏
页码:1021 / 1026
页数:6
相关论文
共 17 条
  • [1] Mean shift: A robust approach toward feature space analysis
    Comaniciu, D
    Meer, P
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (05) : 603 - 619
  • [2] Gill M., 2005, ASSESSING IMPACT CCT
  • [3] Grabner H, 2008, LECT NOTES COMPUT SC, V5302, P234, DOI 10.1007/978-3-540-88682-2_19
  • [4] CONDENSATION - Conditional density propagation for visual tracking
    Isard, M
    Blake, A
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 1998, 29 (01) : 5 - 28
  • [5] Kato T., 2009, P CVIM 157, P161
  • [6] Adaptive Real-Time Video-Tracking for Arbitrary Objects
    Klein, Dominik A.
    Schulz, Dirk
    Frintrop, Simone
    Cremers, Armin B.
    [J]. IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010, : 772 - 777
  • [7] Tracking in low frame rate video: A cascade particle filter with discriminative observers of different life spans
    Li, Yuan
    Ai, Haizhou
    Yamashita, Takayoshi
    Lao, Shihong
    Kawade, Masato
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (10) : 1728 - 1740
  • [8] ROBUST BAYESIAN ESTIMATION FOR LINEAR-MODEL AND ROBUSTIFYING KALMAN FILTER
    MASRELIEZ, CJ
    MARTIN, RD
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1977, 22 (03) : 361 - 371
  • [9] Nihei T., 2013, P SICE TOH CHAPT
  • [10] Incremental learning for robust visual tracking
    Ross, David A.
    Lim, Jongwoo
    Lin, Ruei-Sung
    Yang, Ming-Hsuan
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2008, 77 (1-3) : 125 - 141