BISTABLE CHAOS .1. UNFOLDING THE CUSP

被引:55
作者
KING, GP
GAITO, ST
机构
[1] Nonlinear Systems Laboratory, Mathematics Institute, University of Warwick
来源
PHYSICAL REVIEW A | 1992年 / 46卷 / 06期
关键词
D O I
10.1103/PhysRevA.46.3092
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We describe a simple and intuitive model that relates the catastrophe theory unfolding of a double-well potential with the unfolding of a bimodal map characterizing the dynamics of an autonomous chaotic Van der Pol-Duffing oscillator. The construction of the model was facilitated by developing an analogy with the stochastic dynamics of a particle in a double-well potential. Experimental evidence supporting the model is given.
引用
收藏
页码:3092 / 3099
页数:8
相关论文
共 22 条
[1]  
[Anonymous], 1977, CATASTROPHE THEORY S
[2]  
Birman J., 1983, CONT MATH, V20, P1, DOI DOI 10.1090/CONM/020/718132
[3]   KNOTTED PERIODIC-ORBITS IN DYNAMICAL-SYSTEMS .1. LORENZ EQUATIONS [J].
BIRMAN, JS ;
WILLIAMS, RF .
TOPOLOGY, 1983, 22 (01) :47-82
[4]   EXTRACTING QUALITATIVE DYNAMICS FROM EXPERIMENTAL-DATA [J].
BROOMHEAD, DS ;
KING, GP .
PHYSICA D, 1986, 20 (2-3) :217-236
[5]  
CASDAGLI M, 1992, J ROY STAT SOC B MET, V54, P303
[6]   SYMMETRY-INCREASING BIFURCATION OF CHAOTIC ATTRACTORS [J].
CHOSSAT, P ;
GOLUBITSKY, M .
PHYSICA D, 1988, 32 (03) :423-436
[7]  
DRAZIN PG, IN PRESS PHYSICA D, V58
[8]   PHASE-SHIFTS IN STOCHASTIC RESONANCE [J].
DYKMAN, MI ;
MANNELLA, R ;
MCCLINTOCK, PVE ;
STOCKS, NG .
PHYSICAL REVIEW LETTERS, 1992, 68 (20) :2985-2988
[9]  
DYKMAN MI, IN PRESS PHYSICA D, V58
[10]   PERIODICITY AND CHAOS IN AN AUTONOMOUS ELECTRONIC SYSTEM [J].
FREIRE, E ;
FRANQUELO, LG ;
ARACIL, J .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1984, 31 (03) :237-247