A Class of Lorentzian alpha-Sasakian Manifolds

被引:0
作者
Yildiz, Ahmet [1 ]
Turan, Mine [1 ]
Murathan, Cengizhan [2 ]
机构
[1] Dumlupinar Univ, Art & Sci Fac, Dept Math, Kutahya, Turkey
[2] Uludag Univ, Art & Sci Fac, Dept Math, TR-16059 Bursa, Turkey
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2009年 / 49卷 / 04期
关键词
The Weyl conformal curvature tensor; the conharmoic curvature tensor; the projective curvature tensor; the concircular curvature tensor; Trans-Sasakian manifolds; Lorentzian alpha-Sasakian manifolds;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study we consider phi-conformally flat, phi-conharmonically flat, phi-projectively flat and f concircularly flat Lorentzian alpha-Sasakian manifolds. In all cases, we get the manifold will be an eta-Einstein manifold.
引用
收藏
页码:789 / 799
页数:11
相关论文
共 22 条
[1]  
Arslan K., 2000, BALK J GEOM APPL, V5, P1
[2]  
Blair D.E., 1990, PUBLICACIONS MAT, V34, P199, DOI [10.5565/PUBLMAT_34190_15, DOI 10.5565/PUBLMAT_34190_15]
[3]  
Blair D. E., 1976, LECT NOTES MATH, V509, P146
[4]   The structure of a class of K-contact manifolds [J].
Cabrerizo, JL ;
Fernández, LM ;
Fernández, M ;
Zhen, G .
ACTA MATHEMATICA HUNGARICA, 1999, 82 (04) :331-340
[5]  
CHAKI MC, 1963, INDIAN J MATH, V5, P113
[6]  
Chinea D., 1987, PROC, VII, P564
[7]  
De U. C., 2003, Kyungpook Mathematical Journal, V43, P247
[8]  
Gray A., 1980, ANN MAT PUR APPL, V4, P35, DOI DOI 10.1007/BF01796539
[9]  
Ishii Y., 1957, TENSOR, V7, P73
[10]  
Janssens D., 1981, KODAI MATH J, V4, P1