ON A CLASS OF POLYNOMIALS ORTHOGONAL WITH RESPECT TO A DISCRETE SOBOLEV INNER PRODUCT

被引:54
作者
MARCELLAN, F [1 ]
RONVEAUX, A [1 ]
机构
[1] FAC UNIV NOTRE DAME PAIX,B-5000 NAMUR,BELGIUM
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 1990年 / 1卷 / 04期
关键词
D O I
10.1016/0019-3577(90)90013-D
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper analyzes polynomials orthogonal with respect to the Sobolev inner product phi-approximately(f,g) = Integral f(x)g(x)Q(x)dx+lambda-1f(r)(c)?? g((r))(C) with lambda epsilon R+, c epsilon R, and Q(x) is a weight function. We study this family of orthogonal polynomials, as linked to the polynomials orthogonal with respect to Q(x) and we find the recurrence relation verified by such a family. If the weight Q is semiclassical we obtain a second order differential equation for these polynomials. Finally, an illustrative example is shown.
引用
收藏
页码:451 / 464
页数:14
相关论文
共 10 条
[1]  
ALTHAMMER P, 1962, J REINE ANGEW MATH, V211, P192
[2]  
BRENNER J, 1972, CONSTRUCTIVE THEORY
[3]  
Chihara TS., 1978, INTRO ORTHOGONAL POL
[4]  
Hendriksen E., 1985, LECT NOTES MATH, V1171, P345
[5]  
ISERLES A, 1989, ANAL REPORTS, V12
[6]  
ISERLES A, IN PRESS ALGORITHMS
[7]  
KOEKOEK R, 1989, 8925 TU DELFT REP
[8]   POLYNOMIAL LEAST SQUARE APPROXIMATIONS [J].
LEWIS, DC .
AMERICAN JOURNAL OF MATHEMATICS, 1947, 69 (02) :273-278
[9]   PROLEGOMENA TO THE STUDY OF SEMICLASSICAL ORTHOGONAL POLYNOMIALS [J].
MARONI, P .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1987, 149 :165-184
[10]  
SCHAFKE FW, 1972, J REINE ANGEW MATH, V252, P195