REFINEMENTS OF KOLMOGOROVS LAW OF THE ITERATED LOGARITHM

被引:0
作者
TOMKINS, RJ [1 ]
机构
[1] UNIV REGINA,DEPT MATH & STAT,REGINA S4S 0A2,SASKATCHEWAN,CANADA
关键词
SUMS OF INDEPENDENT RANDOM VARIABLES; LAW OF THE ITERATED LOGARITHM; CENTRAL LIMIT THEOREM;
D O I
10.1016/0167-7152(92)90065-D
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {S(n)} be the partial sums of a sequence {X(n)} of centred random variables. Suppose s(n)2 = ES(n)2, t(n)2 = 2 log log s(n)2 and s(n) --> infinity. It is shown that the law of the iterated logarithm (LIL) holds when t(n)X(n)/s(n) -- 0 almost surely and t(n)\X(n)\/s(n) less-than-or-equal-to Y for all n greater-than-or-equal-to 1 and some L2-integrable Y, even though it may fail if only one of the conditions holds. Moreover, when t(n)X(n)/s(n) --> 0 a.s. and EX(n)2/s(n)2 --> 0, the Central Limit Theorem implies the LIL, but the converse is not always true.
引用
收藏
页码:321 / 325
页数:5
相关论文
共 9 条
[1]  
CHOW YS, 1978, PROBABILITY THEORY
[2]   LAW OF ITERATED LOGARITHM [J].
EGOROV, VA .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1969, 14 (04) :693-&
[3]  
EGOROV VA, 1972, VESTNIK LGU, V13, P140
[4]  
Marcinkiewicz J, 1937, FUND MATH, V29, P215
[5]   GENERALIZED EXPONENTIAL BOUNDS, ITERATED LOGARITHM AND STRONG LAWS [J].
TEICHER, H .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 48 (03) :293-307
[6]   LAW OF ITERATED LOGARITHM [J].
TEICHER, H .
ANNALS OF PROBABILITY, 1974, 2 (04) :714-728
[7]   LINDEBERG FUNCTIONS AND THE LAW OF THE ITERATED LOGARITHM [J].
TOMKINS, RJ .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 65 (01) :135-143
[8]   LAW OF ITERATED LOGARITHM [J].
TOMKINS, RJ .
ANNALS OF PROBABILITY, 1978, 6 (01) :162-168
[9]  
WEISS M, 1959, J MATH MECH, V8, P121