THE NUMBER OF DEGREE RESTRICTED MAPS ON GENERAL SURFACES

被引:19
作者
GAO, ZC [1 ]
机构
[1] UNIV WATERLOO,DEPT COMBINATOR & OPTIMIZAT,WATERLOO N2L 3G1,ON,CANADA
关键词
D O I
10.1016/0012-365X(93)90006-F
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a finite set of positive integers with maximum bigger than two and ($) over tilde$$ m(g,n)(($) over tilde$$ m(g,n)) be the number of n-edged rooted maps on the orientable (nonorientable) surface of type g whose face degrees (or, dually, vertex degrees) all lie in D. Define ($) over tilde$$ m(g)(x)=Sigma(n greater than or equal to 0) ($) over tilde$$ m(g,n)x(n), ($) over tilde$$ m(g)(x)=Sigma(n greater than or equal to 0) ($) over tilde$$ m(g,n)x(n). We shaw that ($) over tilde$$ m(g)(x) and ($) over tilde$$ m(g),(x) are algebraic functions of a certain form. Asymptotic expressions for ($) over tilde$$ m(g,n) and ($) over tilde$$ m(g,n) are also derived for some special sets D.
引用
收藏
页码:47 / 63
页数:17
相关论文
共 8 条
[1]   ASYMPTOTIC METHODS IN ENUMERATION [J].
BENDER, EA .
SIAM REVIEW, 1974, 16 (04) :485-515
[2]   THE ASYMPTOTIC NUMBER OF ROOTED MAPS ON A SURFACE [J].
BENDER, EA ;
CANFIELD, ER .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 43 (02) :244-257
[3]  
BENDER EA, IN PRESS SIAM J DISC
[4]   THE ASYMPTOTIC NUMBER OF ROOTED 2-CONNECTED TRIANGULAR MAPS ON A SURFACE [J].
GAO, ZC .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1992, 54 (01) :102-112
[5]   THE NUMBER OF ROOTED TRIANGULAR MAPS ON A SURFACE [J].
GAO, ZC .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1991, 52 (02) :236-249
[6]  
Hille E., 1962, ANAL FUNCTION THEORY, VII
[7]  
Marcus M, 1964, SURVEY MATRIX THEORY
[8]  
[No title captured]