SOME COMMENTS ON AKIYAMA'S CONJECTURE ON CNS POLYNOMIALS

被引:2
作者
Brunotte, Horst [1 ]
机构
[1] Haus Endt Str 88, D-40593 Dusseldorf, Germany
来源
INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA | 2018年 / 23卷
关键词
Canonical number system; radix representation;
D O I
10.24330/ieja.373660
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well-known that in general polynomials lose their CNS property by addition of small positive integers. We comment on a conjecture of S. Akiyama on addition of sufficiently large positive constants to CNS polynomials.
引用
收藏
页码:167 / 175
页数:9
相关论文
共 35 条
[1]   Generalized radix representations and dynamical systems.: I [J].
Akiyama, S ;
Borbély, T ;
Brunotte, H ;
Pethö, A ;
Thuswaldner, JM .
ACTA MATHEMATICA HUNGARICA, 2005, 108 (03) :207-238
[2]   New criteria for canonical number systems [J].
Akiyama, S ;
Rao, H .
ACTA ARITHMETICA, 2004, 111 (01) :5-25
[3]   Cubic CNS polynomials, notes on a conjecture of W. J. Gilbert [J].
Akiyama, S ;
Brunotte, H ;
Petho, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 281 (01) :402-415
[4]   On canonical number systems [J].
Akiyama, S ;
Pethö, A .
THEORETICAL COMPUTER SCIENCE, 2002, 270 (1-2) :921-933
[5]  
Akiyama S., 2012, COMMUNICATION
[6]  
Akiyama S., 2007, MATH PANNON, V18, P101
[7]   Parallel implementations of Brunotte's algorithm [J].
Antal Tatrai .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2011, 71 (04) :565-572
[8]   Dynamical directions in numeration [J].
Barat, Guy ;
Berthe, Valerie ;
Liardet, Pierre ;
Thuswaldner, Joerg .
ANNALES DE L INSTITUT FOURIER, 2006, 56 (07) :1987-2092
[9]   Numeration and discrete dynamical systems [J].
Berthe, V. .
COMPUTING, 2012, 94 (2-4) :369-387
[10]  
BORBELY T., 2003, THESIS