A New Minimax Theorem for Linear Operators

被引:0
作者
Saint Raymond, Jean [1 ]
机构
[1] Univ Paris 06, Sorbonne Univ, Inst Math Jussieu, Boite 186,4 Pl Jussieu, F-75252 Paris 05, France
来源
MINIMAX THEORY AND ITS APPLICATIONS | 2018年 / 3卷 / 01期
关键词
Minimax; Banach spaces; linear operators;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this note is to prove the following minimax theorem which generalizes a result by B. Ricceri and extends a previous result of the author: let E be a infinite-dimensional Banach space, F be a Banach space, X be a convex subset of E whose interior is non-empty for the weak topology on bounded sets, A a finite-dimensional convex compact subset of (E pound, F), theta: F -> R be a continuous convex coercive map, and Psi: Delta -> R a convex continuous function. Assume moreover that A contains at most one compact operator. Then (sup)(x is an element of X) (inf)(T is an element of Delta) (theta(Tx) + Psi(T)) = (inf)(T is an element of Delta) (sup)(x is an element of X) (theta(Tx) + Psi(T)).
引用
收藏
页码:131 / 160
页数:30
相关论文
共 5 条
[1]   MINIMAX INEQUALITY FOR OPERATORS AND A RELATED NUMERICAL RANGE [J].
ASPLUND, E ;
PTAK, V .
ACTA MATHEMATICA UPPSALA, 1971, 126 (1-2) :53-&
[2]   POINTWISE COMPACT SETS OF BAIRE-MEASURABLE FUNCTIONS [J].
BOURGAIN, J ;
FREMLIN, DH ;
TALAGRAND, M .
AMERICAN JOURNAL OF MATHEMATICS, 1978, 100 (04) :845-886
[3]   ABSOLUTE AND UNCONDITIONAL CONVERGENCE IN NORMED LINEAR SPACES [J].
DVORETZKY, A ;
ROGERS, CA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1950, 36 (03) :192-197
[4]  
Ricceri B., 2016, LINEAR AND NONLINEAR, V2, P47
[5]  
Saint Raymond J, 2016, MINIMAX THEORY APPL, V1, P291