Some Trigonometric Identities Involving Fibonacci and Lucas Numbers

被引:0
作者
Bibak, Kh. [1 ]
Haghighi, M. H. Shirdareh [1 ]
机构
[1] Shiraz Univ, Dept Math, Shiraz 71454, Iran
关键词
Fibonacci numbers; Lucas numbers; spanning tree; trigonometric identity;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, using the number of spanning trees in some classes of graphs, we prove the identities: F-n = 2(n-1)/n root Pi (n-1)(k=1) (1-cos k pi/n cos 3k pi/n), n >= 2, Pi(n-1)(k=0) (1+4sin(2) k pi/n) = L-2n-2 = F2n + 2 -F2n-2 -2, n >= 1, where F-n and L-n denote the Fibonacci and Lucas numbers, respectively. Also, we give a new proof for the identity: F-n = Pi([n-1/2])(k=1)(1+4sin(2) k pi/n) = Pi([n-1/2])(k=1) (1+4 cos(2) k pi/n), n >= 4.
引用
收藏
页数:5
相关论文
共 12 条
  • [1] Anderson WN, 1985, LINEAR MULTILINEAR A, V18, P141, DOI DOI 10.1080/03081088508817681
  • [2] Bibak Kh., ROCKY MOUNT IN PRESS
  • [3] Bibak Kh., 2009, APPL MATH SCI, V3, P2263
  • [4] Brouwer A.E., 1989, DISTANCE REGULAR GRA
  • [5] CVETKOVIC D, 1995, SPECTRA GRAPHS THEOR
  • [6] Garnier N, 2008, FIBONACCI QUART, V46-47, P56
  • [7] Kirchhoff G., 1847, ANN PHYS-NEW YORK, V148, P497, DOI [10.1002/andp.18471481202, DOI 10.1002/ANDP.18471481202]
  • [8] COUNTING TREES IN A CERTAIN CLASS OF GRAPHS
    KLEITMAN, DJ
    GOLDEN, B
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (01) : 40 - 44
  • [9] Laplacian graph eigenvectors
    Merris, R
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 278 (1-3) : 221 - 236
  • [10] NUMBER OF SPANNING TREES IN A WHEEL
    MYERS, BR
    [J]. IEEE TRANSACTIONS ON CIRCUIT THEORY, 1971, CT18 (02): : 280 - &