APPROXIMATE ANALYTICAL SOLUTIONS TO NONLINEAR OSCILLATIONS OF NON-NATURAL SYSTEMS USING HE'S ENERGY BALANCE METHOD

被引:15
作者
Ganji, D. D. [1 ]
Karimpour, S. [1 ,2 ]
Ganji, S. S. [1 ,3 ]
机构
[1] Babol Univ Technol, Dept Civil & Mech Engn, POB 484, Babol Sar, Iran
[2] Semnan Univ, Dept Civil & Struct Engn, Semnan, Iran
[3] Azad Islamic Univ, Dept Civil & Transportat Engn, Sci & Res Branch, Tehran, Iran
来源
PROGRESS IN ELECTROMAGNETICS RESEARCH M | 2008年 / 5卷
关键词
D O I
10.2528/PIERM08081501
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper applies He's Energy balance method (EBM) to study periodic solutions of strongly nonlinear systems such as nonlinear vibrations and oscillations. The method is applied to two nonlinear differential equations. Some examples are given to illustrate the effectiveness and convenience of the method. The results are compared with exact solutions which lead us showing a good accuracy. The method can be easily extended to other nonlinear systems and can therefore be found widely applicable in engineering and other science.
引用
收藏
页码:43 / 54
页数:12
相关论文
共 39 条
[1]   Analysis of nonlinear oscillators with un force by He’s energy balance method [J].
Akbarzade, M. ;
Ganji, D.D. ;
Pashaei, H. .
Progress In Electromagnetics Research C, 2008, 3 :57-66
[2]  
[Anonymous], 2000, INT J NONLIN SCI NUM, DOI DOI 10.1515/IJNSNS.2000.1.1.51
[3]   Application of a modified He's homotopy perturbation method to obtain higher-order approximations of an x1/3 force nonlinear oscillator [J].
Belendez, A. ;
Pascual, C. ;
Gallego, S. ;
Ortuno, M. ;
Neipp, C. .
PHYSICS LETTERS A, 2007, 371 (5-6) :421-426
[4]   Application of a modified He's homotopy perturbation method to obtain higher-order approximations to a nonlinear oscillator with discontinuities [J].
Belendez, A. ;
Pascual, C. ;
Ortuno, M. ;
Belendez, T. ;
Gallego, S. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (02) :601-610
[5]   Solution of an integro-differential equation arising in oscillating magnetic fields using He's homotopy perturbation method [J].
Dehghan, M. ;
Shakeri, F. .
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2008, 78 :361-376
[6]  
Dimarogonas A. D., 1992, VIBRATION ENG
[7]  
Fidlin A., 2006, NONLINEAR OSCILLATIO
[8]  
Ganji DD, 2006, INT J NONLIN SCI NUM, V7, P411
[9]   VARIATIONAL APPROACH METHOD FOR NONLINEAR OSCILLATIONS OF THE MOTION OF A RIGID ROD ROCKING BACK AND CUBIC-QUINTIC DUFFING OSCILLATORS [J].
Ganji, S. S. ;
Ganji, D. D. ;
Babazadeh, H. ;
Karimpour, S. .
PROGRESS IN ELECTROMAGNETICS RESEARCH M, 2008, 4 :23-32
[10]   Periodic Solution for Strongly Nonlinear Vibration Systems by He's Energy Balance Method [J].
Ganji, S. S. ;
Ganji, D. D. ;
Ganji, Z. Z. ;
Karimpour, S. .
ACTA APPLICANDAE MATHEMATICAE, 2009, 106 (01) :79-92