HAMILTONIAN COLLAPSING OF IRRATIONAL LAGRANGIAN SUBMANIFOLDS WITH SMALL 1ST BETTI NUMBER

被引:3
|
作者
LALONDE, F
机构
[1] Département de Mathématiques et d'Informatique, Université de Québec à Montréal, Montréal, H3C 3P8, Québec, Succ. A.
关键词
D O I
10.1007/BF02096945
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Among the main symplectic invariants of a closed Lagrange submanifold L of the cotangent of R(n) is the tubular radius R(L) defined as the smallest tube D(r) x C(n-1) of C(n) congruent-to T*R(n) in which L can be pushed by an Hamiltonian diffeotopy of C(n). We show here, using pseudo-holomorphic techniques, that such a submanifold cannot collapse if the first Betti number of L is smaller than 3 and if the Maslov class of L does not vanish; in other words, R(L) is then strictly positive and one can actually give an explicit lower bound in terms of the Liouville and Maslov classes of L.
引用
收藏
页码:613 / 622
页数:10
相关论文
共 50 条