Cu-based thermoelectric materials

被引:284
作者
Qiu, Pengfei [1 ,2 ]
Shi, Xun [1 ,2 ]
Chen, Lidong [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Ceram, CAS Key Lab Mat Energy Convers, Shanghai 200050, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.ensm.2016.01.009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thermoelectric technology has the ability to realize direct conversion between heat and electricity. Compared to the traditional refrigeration and energy generation technologies, thermoelectric technology has the advantages of having no moving parts, quiet, and long term stability. Thus, thermoelectric technology offers a great potential for the use in many cooling and power generating applications to help combat the global energy dilemma. Research on copper (Cu)-based materials has a long history in the thermoelectric field and it has become a topic which is very popular recently. In this review, the main progresses and achievements in Cu-based thermoelectric materials are summarized. Commencing with the history of Cu-based thermoelectric materials, we will introduce several typical kinds of high performance Cu-based thermoelectric materials, termed as diamond-like compounds, superionic conductors, tetrahedrites Cu12Sb4S13, and oxyselenide BiCuSeO. Then, new thermoelectric phenomenon and mechanisms discovered in these Cu-based materials and the strategies for the optimization of thermoelectric performance are also discussed. Finally, the challenges for commercial applications by using these Cu-based thermoelectric materials are discussed. We believed that the progresses in Cu-based materials will promote the use of thermoelectric technology to play a positive role in future energy solutions. (C) 2016 Elsevier B. V. Allrights reserved.
引用
收藏
页码:85 / 97
页数:13
相关论文
共 110 条
[1]   Trend for Thermoelectric Materials and Their Earth Abundance [J].
Amatya, R. ;
Ram, R. J. .
JOURNAL OF ELECTRONIC MATERIALS, 2012, 41 (06) :1011-1019
[2]   Ionic conductivity and chemical diffusion in superionic LixCu2-xS (0 ≤ x ≤ 0.25) [J].
Balapanov, MK ;
Gafurov, IG ;
Mukhamed'yanov, UK ;
Yakshibaev, RA ;
Ishembetov, RK .
PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 2004, 241 (01) :114-119
[3]   Thermoelectric properties of Ag-doped Cu2Se and Cu2Te [J].
Ballikaya, Sedat ;
Chi, Hang ;
Salvador, James R. ;
Uher, Ctirad .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (40) :12478-12484
[4]   Structural stability of the synthetic thermoelectric ternary and nickel-substituted tetrahedrite phases [J].
Barbier, Tristan ;
Lemoine, Pierric ;
Gascoin, Stephanie ;
Lebedev, Oleg I. ;
Kaltzoglou, Andreas ;
Vaqueiro, Paz ;
Powell, Anthony V. ;
Smith, Ron I. ;
Guilmeau, Emmanuel .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 634 :253-262
[5]   Structural and Electronic Transport Properties in Sr-Doped BiCuSeO [J].
Barreteau, Celine ;
Berardan, David ;
Amzallag, Emilie ;
Zhao, LiDong ;
Dragoe, Nita .
CHEMISTRY OF MATERIALS, 2012, 24 (16) :3168-3178
[6]  
Becquerel A. C., 1827, ANN CHIM PHYS, V35, P328
[7]  
Becquerel A. E., 1866, ANN CHIM PHYS, V48, P389
[8]   Electrical conductivity of Ag7PSe6 and Cu7PSe6 [J].
Beeken, R. B. ;
Driessen, C. R. ;
Hinaus, B. M. ;
Pawlisch, D. E. .
SOLID STATE IONICS, 2008, 179 (21-26) :1058-1060
[9]   Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].
Bell, Lon E. .
SCIENCE, 2008, 321 (5895) :1457-1461
[10]   High thermoelectric performance of (AgCrSe2)0.5(CuCrSe2)0.5 nano-composites having all-scale natural hierarchical architectures [J].
Bhattacharya, Shovit ;
Bohra, Anil ;
Basu, Ranita ;
Bhatt, Ranu ;
Ahmad, Sajid ;
Meshram, K. N. ;
Debnath, A. K. ;
Singh, Ajay ;
Sarkar, Shaibal K. ;
Navneethan, M. ;
Hayakawa, Y. ;
Aswal, D. K. ;
Gupta, S. K. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (40) :17122-17129