ALGEBRAIC STRUCTURE OF TENSOR SUPEROPERATORS FOR THE SUPER-ROTATION ALGEBRA .2.

被引:13
作者
MINNAERT, P
MOZRZYMAS, M
机构
关键词
D O I
10.1063/1.529684
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that the sets of tensor superoperators for the super-rotation algebra can be used to build explicit bases for the representations of several superalgebras. The representations built in this way are the fundamental representations of the special linear superalgebras sl(2j + 1[2j) and of the orthosymplectic superalgebras osp (2j + 1[2j) and the (4j + 1)-dimensional representations of osp(1[2) and sl(1[2) (Stavraki) superalgebras. It is shown that the chain osp(1[2) subset-of osp(2j + 1[2j) or osp(2j[2j + 1) explains the existence of a series of nontrivial zeros for the super-rotation 6-j symbol (SR6-j symbols).
引用
收藏
页码:1594 / 1600
页数:7
相关论文
共 8 条
[1]  
BIEDENHARN LC, 1981, RACAH WIGNER ALGEBRA, V9, P415
[2]  
Edmonds A.R., 1955, ANGULAR MOMENTUM QUA
[3]   SIMPLE SUPERSYMMETRIES [J].
FREUND, PGO ;
KAPLANSKY, I .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (02) :228-231
[4]  
Judd B. R., 1963, OPERATOR TECHNIQUES
[5]   RACAH-WIGNER CALCULUS FOR THE SUPER-ROTATION ALGEBRA .1. [J].
MINNAERT, P ;
MOZRZYMAS, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (05) :1582-1593
[6]   ON THE SUPERALGEBRAS BUILT FROM SO(3) TENSOR-OPERATORS [J].
MINNAERT, P ;
MOZRZYMAS, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (03) :588-594
[7]  
RACAH G, 1951, UNPUB
[8]  
Wigner E.P., 1959, GROUP THEORY