QUANTUM GROUP-STRUCTURE IN A FERMIONIC EXTENSION OF THE QUANTUM HARMONIC-OSCILLATOR

被引:18
作者
MACFARLANE, AJ
MAJID, S
机构
[1] DAMTP, Cambridge University, Cambridge
关键词
D O I
10.1016/0370-2693(91)90924-F
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss the role osp(1/2) plays for a simple generalisation S(E) of the harmonic oscillator, showing how a quantum group structure, with universal R-matrix, arises out of it in the treatment of composite "many S(E)" systems.
引用
收藏
页码:71 / 74
页数:4
相关论文
共 23 条
[1]   HILBERT SPACES OF ANALYTIC-FUNCTIONS AND GENERALIZED COHERENT STATES [J].
ARIK, M ;
COON, DD .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (04) :524-527
[2]  
Barut, 1988, DYNAMICAL GROUPS SPE, V1
[3]  
BARUT AO, 1988, DYNAMICAL GROUPS SPE, V2
[4]  
BIEDENHARN LC, 1989, J PHYS A, V22, pL783
[5]  
CELEGHINI E, 1990, YITP K865 KYOT PREPR
[6]   Q-DEFORMED JACOBI IDENTITY, Q-OSCILLATORS AND Q-DEFORMED INFINITE-DIMENSIONAL ALGEBRAS [J].
CHAICHIAN, M ;
KULISH, P ;
LUKIERSKI, J .
PHYSICS LETTERS B, 1990, 237 (3-4) :401-406
[7]  
CSALBUONI R, 1976, NUOVO CIMENTO A, V33, P389
[8]  
DECROMBRUGGHE M, 1983, ANN PHYS, V151, P90
[9]  
Dothan Y., 1970, Physical Review D (Particles and Fields), V2, P2944, DOI 10.1103/PhysRevD.2.2944
[10]  
FISCHMAN D, 1990, SCHURS DOUBLE CENTRA