Spectra of secondary particles generated upon virtual irradiation of gold nanosensitizers: implications for surface modification

被引:4
作者
Belousov, Alexander V. [1 ]
Morozov, Vladimir N. [1 ,2 ]
Krusanov, Grigorii A. [3 ]
Kolyvanova, Maria A. [2 ]
Chernyaev, Alexander P. [1 ,3 ]
Shtil, Alexander A. [4 ,5 ]
机构
[1] Lomonosov Moscow State Univ, Fac Phys, Moscow, Russia
[2] Fed Med Biol Agcy, State Res Ctr, Burnasyan Fed Med Biophys Ctr, Moscow, Russia
[3] Lomonosov Moscow State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia
[4] NN Blokhin Natl Med Ctr Oncol, Moscow, Russia
[5] Gause Inst New Antibiot, Moscow, Russia
关键词
gold nanoparticles; radiosensitizers; Monte Carlo simulation; Geant4; radiation therapy; cancer;
D O I
10.1088/2057-1976/aac73d
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Surface modifications of radiosensitizing gold nanoparticles (GNP), in particular coating with polyethylene glycol (PEG), may greatly improve their physico-chemical, pharmacological and theranostic properties. However, GNP coating material can seriously alter the efficacy of radiosensitization. We performed a Monte-Carlo simulation of 17 nm GNP PEGylation (8.5 nm layer thickness) effects on secondary radiation spectra at different energies of primary photons (from similar to 8 keV to 1 MeV). Our calculations revealed a decrease of the amount of low energy electrons (LEE) that leave PEGylated GNP(from 20% to 40% at the photon energy < 500 keV, and from 20% to 0% at energies 500-1000 keV). In all cases, the average energy of the low-energy component of the electron spectrum was smaller for coated GNP. Total energy differed only slightly at photon energy up to similar to 200 keV; at bigger energies the normalized total energy of secondary electrons that left the PEG shell significantly (similar to 20%) exceeded the respective value for electrons that left the uncoated GNP. Thus, rational design of GNP-based radiosensitizers should include critical assessment of physico-chemical properties of the material used for surface modification.
引用
收藏
页数:8
相关论文
共 53 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]   Biomolecular Damage Induced by Ionizing Radiation: The Direct and Indirect Effects of Low-Energy Electrons on DNA [J].
Alizadeh, Elahe ;
Orlando, Thomas M. ;
Sanche, Leon .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 66, 2015, 66 :379-398
[3]   Geant4 developments and applications [J].
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Dubois, PA ;
Asai, M ;
Barrand, G ;
Capra, R ;
Chauvie, S ;
Chytracek, R ;
Cirrone, GAP ;
Cooperman, G ;
Cosmo, G ;
Cuttone, G ;
Daquino, GG ;
Donszelmann, M ;
Dressel, M ;
Folger, G ;
Foppiano, F ;
Generowicz, J ;
Grichine, V ;
Guatelli, S ;
Gumplinger, P ;
Heikkinen, A ;
Hrivnacova, I ;
Howard, A ;
Incerti, S ;
Ivanchenko, V ;
Johnson, T ;
Jones, F ;
Koi, T ;
Kokoulin, R ;
Kossov, M ;
Kurashige, H ;
Lara, V ;
Larsson, S ;
Lei, F ;
Link, O ;
Longo, F ;
Maire, M ;
Mantero, A ;
Mascialino, B ;
McLaren, I ;
Lorenzo, PM ;
Minamimoto, K ;
Murakami, K ;
Nieminen, P ;
Pandola, L ;
Parlati, S ;
Peralta, L .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (01) :270-278
[4]   Recent developments in GEANT4 [J].
Allison, J. ;
Amako, K. ;
Apostolakis, J. ;
Arce, P. ;
Asai, M. ;
Aso, T. ;
Bagli, E. ;
Bagulya, A. ;
Banerjee, S. ;
Barrand, G. ;
Beck, B. R. ;
Bogdanov, A. G. ;
Brandt, D. ;
Brown, J. M. C. ;
Burkhardt, H. ;
Canal, Ph. ;
Cano-Ott, D. ;
Chauvie, S. ;
Cho, K. ;
Cirrone, G. A. P. ;
Cooperman, G. ;
Cortes-Giraldo, M. A. ;
Cosmo, G. ;
Cuttone, G. ;
Depaola, G. ;
Desorgher, L. ;
Dong, X. ;
Dotti, A. ;
Elvira, V. D. ;
Folger, G. ;
Francis, Z. ;
Galoyan, A. ;
Garnier, L. ;
Gayer, M. ;
Genser, K. L. ;
Grichine, V. M. ;
Guatelli, S. ;
Gueye, P. ;
Gumplinger, P. ;
Howard, A. S. ;
Hrivnacova, I. ;
Hwang, S. ;
Incerti, S. ;
Ivanchenko, A. ;
Ivanchenko, V. N. ;
Jones, F. W. ;
Jun, S. Y. ;
Kaitaniemi, P. ;
Karakatsanis, N. ;
Karamitrosi, M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 835 :186-225
[5]  
Attix FH., 1986, INTRO RADIOLOGICAL P, DOI [10.1002/9783527617135, DOI 10.1002/9783527617135]
[6]   Modeling the Effect of Surface Modification of Gold Nanoparticles Irradiated with 60Co on the Secondary Particles Emission Spectrum [J].
Belousov, A. V. ;
Morozov, V. N. ;
Krusanov, G. A. ;
Kolyvanova, M. A. ;
Chernyaev, A. P. ;
Shtil, A. A. .
DOKLADY PHYSICS, 2018, 63 (03) :96-99
[7]   Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy [J].
Butterworth, K. T. ;
Coulter, J. A. ;
Jain, S. ;
Forker, J. ;
McMahon, S. J. ;
Schettino, G. ;
Prise, K. M. ;
Currell, F. J. ;
Hirst, D. G. .
NANOTECHNOLOGY, 2010, 21 (29)
[8]   Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice [J].
Chang, Meng-Ya ;
Shiau, Ai-Li ;
Chen, Yu-Hung ;
Chang, Chih-Jui ;
Chen, Helen H-W ;
Wu, Chao-Liang .
CANCER SCIENCE, 2008, 99 (07) :1479-1484
[9]   Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X-radiation [J].
Chattopadhyay, Niladri ;
Cai, Zhongli ;
Kwon, Yongkyu Luke ;
Lechtman, Eli ;
Pignol, Jean-Philippe ;
Reilly, Raymond M. .
BREAST CANCER RESEARCH AND TREATMENT, 2013, 137 (01) :81-91
[10]   Synthesis of PVP capped gold nanoparticles by the UV-irradiation technique [J].
Chili, Muntuwenkosi M. ;
Pullabhotla, V. S. R. Rajasekhar ;
Revaprasadu, N. .
MATERIALS LETTERS, 2011, 65 (17-18) :2844-2847