PARACONTROLLED DISTRIBUTIONS AND SINGULAR PDES

被引:329
作者
Gubinelli, Massimiliano [1 ,2 ,3 ]
Imkeller, Peter [4 ]
Perkowski, Nicolas [1 ,2 ]
机构
[1] Univ Paris 09, CEREMADE, F-75775 Paris 16, France
[2] Univ Paris 09, CNRS, UMR 7534, F-75775 Paris 16, France
[3] Inst Univ France, Paris, France
[4] Humboldt Univ, Inst Math, Berlin, Germany
关键词
D O I
10.1017/fmp.2015.2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce an approach to study certain singular partial differential equations (PDEs) which is based on techniques from paradifferential calculus and on ideas from the theory of controlled rough paths. We illustrate its applicability on some model problems such as differential equations driven by fractional Brownian motion, a fractional Burgers-type stochastic PDE (SPDE) driven by space-time white noise, and a nonlinear version of the parabolic Anderson model with a white noise potential.
引用
收藏
页数:75
相关论文
共 39 条
[11]  
Chouk K., 2015, INVARIANCE PRI UNPUB
[12]   Non-linear rough heat equations [J].
Deya, A. ;
Gubinelli, M. ;
Tindel, S. .
PROBABILITY THEORY AND RELATED FIELDS, 2012, 153 (1-2) :97-147
[13]   BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH ROUGH DRIVERS [J].
Diehl, Joscha ;
Friz, Peter .
ANNALS OF PROBABILITY, 2012, 40 (04) :1715-1758
[14]  
FRIZ P., 2012, PREPRINT
[15]  
Friz P.K, 2010, MULTIDIMENSIONAL STO, DOI DOI 10.1017/CBO9780511845079
[16]   On the splitting-up method for rough (partial) differential equations [J].
Friz, Peter ;
Oberhauser, Harald .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (02) :316-338
[17]   Controlling rough paths [J].
Gubinelli, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 216 (01) :86-140
[18]  
Gubinelli M., 2015, KPZ RELOADED UNPUB
[19]  
Gubinelli M., 2015, PREPRINT
[20]  
Gubinelli M., 2014, PREPRINT