PARACONTROLLED DISTRIBUTIONS AND SINGULAR PDES

被引:329
作者
Gubinelli, Massimiliano [1 ,2 ,3 ]
Imkeller, Peter [4 ]
Perkowski, Nicolas [1 ,2 ]
机构
[1] Univ Paris 09, CEREMADE, F-75775 Paris 16, France
[2] Univ Paris 09, CNRS, UMR 7534, F-75775 Paris 16, France
[3] Inst Univ France, Paris, France
[4] Humboldt Univ, Inst Math, Berlin, Germany
关键词
D O I
10.1017/fmp.2015.2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce an approach to study certain singular partial differential equations (PDEs) which is based on techniques from paradifferential calculus and on ideas from the theory of controlled rough paths. We illustrate its applicability on some model problems such as differential equations driven by fractional Brownian motion, a fractional Burgers-type stochastic PDE (SPDE) driven by space-time white noise, and a nonlinear version of the parabolic Anderson model with a white noise potential.
引用
收藏
页数:75
相关论文
共 39 条
[1]  
Bahouri H., 2011, FOURIER ANAL NONLINE
[2]   The evolution of a random vortex filament [J].
Bessaih, H ;
Gubinelli, M ;
Russo, F .
ANNALS OF PROBABILITY, 2005, 33 (05) :1825-1855
[3]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[4]   Global solutions of the random vortex filament equation [J].
Brzezniak, Z. ;
Gubinelli, M. ;
Neklyudov, M. .
NONLINEARITY, 2013, 26 (09) :2499-2514
[5]  
CARMONA R, 1994, PARABOLIC ANDERSON P
[6]   A (rough) pathwise approach to a class of non-linear stochastic partial differential equations [J].
Caruana, Michael ;
Friz, Peter K. ;
Oberhauser, Harald .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (01) :27-46
[7]   Partial differential equations driven by rough paths [J].
Caruana, Michael ;
Friz, Peter .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (01) :140-173
[8]  
Catellier R., 2013, PREPRINT
[9]   On the global wellposedness of the 3-D Navier-Stokes equations with large initial data [J].
Chemin, Jean-Yves ;
Gallagher, Isabelle .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2006, 39 (04) :679-698
[10]  
Chouk K., 2014, PREPRINT