Mixed finite element formulation in large deformation frictional contact problem

被引:15
作者
Baillet, Laurent [1 ]
Sassi, Taoufik [2 ]
机构
[1] CNRS, UMR 5514, INSA Lyon, Lab Mecan Contacts & Solides, F-69621 Villeurbanne, France
[2] Univ Caen, CNRS 6139, Lab Math Nicolas Oresme, F-14032 Caen, France
来源
EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS | 2005年 / 14卷 / 2-3期
关键词
contact; mixed finite element; friction; dynamic explicit; mortar elements;
D O I
10.3166/reef.14.287-304
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper presents a mixed variational framework and numerical examples to treat a bidimensional friction contact problem in large deformation. Two different contact algorithms with friction are developed using the 2D finite element code PLAST2. The first contact algorithm is the classical node-on-segment, and the second one corresponds to an extension of the mortar element method to a unilateral contact problem with friction. In this last method, the discretized normal and tangential stresses on the contact surface are expressed by using either continuous piecewise linear or piecewise constant Lagrange multipliers in the saddle-point formulation. The two algorithms based on Lagrange multipliers method are developed and compared for linear and quadratic elements.
引用
收藏
页码:287 / 304
页数:18
相关论文
共 25 条
[1]  
ALART P, 1991, COMPUTER METHODS APP, V92, P253
[2]   Numerical implementation of different finite element methods for contact problems with friction. [J].
Baillet, L ;
Sassi, T .
COMPTES RENDUS MECANIQUE, 2003, 331 (11) :789-796
[3]   Finite element method with Lagrange multipliers for contact problems with friction [J].
Baillet, L ;
Sassi, T .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (10) :917-922
[4]  
BERNARDI C, 1994, PITMAN RES NOTES MAT, V299, P13
[5]  
Bruyere K, 1997, COMPUTATIONAL PLASTICITY: FUNDAMENTALS AND APPLICATIONS, PTS 1 AND 2, P1156
[6]  
Chaudhary A., 1986, COMPUT STRUCT, V37, P319
[7]  
Ciarlet PG, 1978, STUDIES MATH ITS APP, V4
[8]  
Coorevits P, 2002, MATH COMPUT, V71, P1, DOI 10.1090/S0025-5718-01-01318-7
[9]  
Duvaut G., 1972, INEQUATIONS MECANIQU
[10]   APPROXIMATION OF THE SIGNORINI PROBLEM WITH FRICTION BY A MIXED FINITE-ELEMENT METHOD [J].
HASLINGER, J ;
HLAVACEK, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1982, 86 (01) :99-122