EXISTENCE AND UNIQUENESS OF THE MAXIMUM-LIKELIHOOD ESTIMATOR FOR THE 2-PARAMETER NEGATIVE BINOMIAL-DISTRIBUTION

被引:13
作者
ARAGON, J [1 ]
EBERLY, D [1 ]
EBERLY, S [1 ]
机构
[1] UNIV TEXAS,DIV MATH COMP SCI & STAT,SAN ANTONIO,TX 78285
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
MAXIMUM LIKELIHOOD ESTIMATOR; NEGATIVE BINOMIAL DISTRIBUTION; NEWTON METHOD;
D O I
10.1016/0167-7152(92)90157-Z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given a sample with mean xBAR and second moment s2, Anscombe in 1950 conjectured that the maximum likelihood equations for the two-parameter negative binomial distribution have a unique Solution if and only if s2 > xBAR. We give a proof of his conjecture.
引用
收藏
页码:375 / 379
页数:5
相关论文
共 29 条
[1]   THE STATISTICAL ANALYSIS OF INSECT COUNTS BASED ON THE NEGATIVE BINOMIAL DISTRIBUTION [J].
ANSCOMBE, FJ .
BIOMETRICS, 1949, 5 (02) :165-173
[2]  
ANSCOMBE FJ, 1950, BIOMETRIKA, V37, P358, DOI 10.1093/biomet/37.3-4.358
[3]   FITTING THE NEGATIVE BINOMIAL-DISTRIBUTION [J].
BINET, FE .
BIOMETRICS, 1986, 42 (04) :989-992
[4]   BINOMIAL AND CENSORED SAMPLING IN ESTIMATION AND DECISION-MAKING FOR THE NEGATIVE BINOMIAL-DISTRIBUTION [J].
BINNS, MR ;
BOSTANIAN, NJ .
BIOMETRICS, 1988, 44 (02) :473-483
[5]   FITTING THE NEGATIVE BINOMIAL DISTRIBUTION TO BIOLOGICAL DATA - NOTE ON THE EFFICIENT FITTING OF THE NEGATIVE BINOMIAL [J].
BLISS, CI ;
FISHER, RA .
BIOMETRICS, 1953, 9 (02) :176-200
[6]  
BLISS CI, 1958, BIOMETRIKA, V45, P36
[7]   EXTENDED MOMENT SERIES AND THE PARAMETERS OF THE NEGATIVE BINOMIAL-DISTRIBUTION [J].
BOWMAN, KO .
BIOMETRICS, 1984, 40 (01) :249-252
[8]   ESTIMATION OF THE NEGATIVE BINOMIAL PARAMETER-KAPPA BY MAXIMUM QUASI-LIKELIHOOD [J].
CLARK, SJ ;
PERRY, JN .
BIOMETRICS, 1989, 45 (01) :309-316
[9]  
EBERLY S, 1991, THESIS U TEXAS SAN A
[10]   The negative binomial distribution [J].
Fisher, RA .
ANNALS OF EUGENICS, 1941, 11 :182-187