SEMICLASSICAL ANALYSIS IN INFINITE DIMENSIONS: WIGNER MEASURES

被引:0
作者
Falconi, Marco [1 ]
机构
[1] Univ Rome Tre, Dipartimento Matemat & Fis, Largo San Leonardo Murialdo 1, I-00146 Rome, Italy
关键词
Wigner measures; Infinite dimensional semiclassical analysis; Weyl C*-algebra;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We review some aspects of semiclassical analysis for systems whose phase space is of arbitrary (possibly infinite) dimension. An emphasis will be put on a general derivation of the so-called Wigner classical measures as the limit of states in a non-commutative algebra of quantum observables.
引用
收藏
页码:18 / 35
页数:18
相关论文
共 35 条
[1]  
Ammari Z., 2016, ARXIV E PRINTS
[2]  
Ammari Z, 2016, COMMUN MATH SCI, V14, P1417
[3]   Mean Field Limit for Bosons and Infinite Dimensional Phase-Space Analysis [J].
Ammari, Zied ;
Nier, Francis .
ANNALES HENRI POINCARE, 2008, 9 (08) :1503-1574
[4]  
Amour L, 2001, ASYMPTOTIC ANAL, V26, P135
[5]  
Amour L., 2016, APPL MATH RES EXPRES
[6]   On bounded pseudodifferential operators in Wiener spaces [J].
Amour, Laurent ;
Jager, Lisette ;
Nourrigat, Jean .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (09) :2747-2812
[7]  
[Anonymous], 1969, ACTUALITES SCI IND
[8]  
Bourbaki N., 1972, ELEMENTS MATH TOPOLO
[9]   Invariant measures for the Gross-Piatevskii equation [J].
Bourgain, J .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (08) :649-702
[10]   PERIODIC NONLINEAR SCHRODINGER-EQUATION AND INVARIANT-MEASURES [J].
BOURGAIN, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 166 (01) :1-26