RELATIVE UNIFORMITY OF SOURCES AND THE COMPARISON OF OPTIMAL CODE COSTS

被引:5
作者
ABRAHAMS, J
LIPMAN, MJ
机构
[1] Office of Naval Research, Mathematical Sciences Division, Arlington, VA
关键词
HUFFMAN CODE; SHANNON ENTROPY; RENYI ENTROPY; UNIFORM SOURCE;
D O I
10.1109/18.259659
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Conditions on the probability distributions of two sources that describe their relative uniformity are shown to be sufficient for inequalities on their minimum average codeword lengths and entropies. The Huffman coding problem and variants involving Renyi entropy are addressed.
引用
收藏
页码:1695 / 1697
页数:3
相关论文
共 7 条
[1]   DETERMINATION OF ALL ADDITIVE QUASIARITHMETIC MEAN CODEWORD LENGTHS [J].
ACZEL, J .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1974, 29 (04) :351-360
[2]   CODING THEOREM AND RENYIS ENTROPY [J].
CAMPBELL, LL .
INFORMATION AND CONTROL, 1965, 8 (04) :423-&
[3]  
HU TC, 1970, 2 P CHAP HILL C COMB, P285
[4]   GENERALIZED HUFFMAN TREES [J].
HWANG, FK .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1979, 37 (01) :124-127
[5]  
KAPUR JN, 1988, J COMBINAT INFORM SY, V13, P114
[6]  
PARKER DS, 1980, SIAM J COMPUT, V9, P470, DOI 10.1137/0209035
[7]   ORDER PRESERVING MEASURES OF INFORMATION [J].
SHIVA, SGS ;
AHMED, NU ;
GEORGANA.ND .
JOURNAL OF APPLIED PROBABILITY, 1973, 10 (03) :666-670