SOME RESULTS ON SN-K FRACTIONAL FACTORIAL-DESIGNS WITH MINIMUM ABERRATION OR OPTIMAL MOMENTS

被引:76
作者
CHEN, JH
WU, CFJ
机构
关键词
FRACTIONAL FACTORIAL DESIGN; MINIMUM ABERRATION DESIGN; OPTIMAL-MOMENTS DESIGN; RESOLUTION;
D O I
10.1214/aos/1176348135
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The minimum aberration criterion is commonly used for selecting good fractional factorial designs. In this paper we obtain minimum aberration 2n-k designs for k = 3,4 and any n. For k > 4 analogous results are not available for general n since the resolution criterion is not periodic for general n and k > 4. However, it can be shown that for any fixed k, both the resolution criterion and the minimum aberration criterion have a periodicity property in n for s(n-k) designs with large n. Furthermore, the optimal-moments criterion is periodic for any n and k.
引用
收藏
页码:1028 / 1041
页数:14
相关论文
共 8 条
[1]  
BOX GEP, 1978, STATISTICS EXPT
[2]   FRACTIONAL REPLICATION ARRANGEMENTS FOR FACTORIAL EXPERIMENTS WITH FACTORS AT 2 LEVELS [J].
BROWNLEE, KA ;
KELLY, BK ;
LORAINE, PK .
BIOMETRIKA, 1948, 35 (3-4) :268-276
[3]  
CHEN J, 1989, STAT8918 U WAT DEP S
[4]   CONSTRUCTING TABLES OF MINIMUM ABERRATION PN-M DESIGNS [J].
FRANKLIN, MF .
TECHNOMETRICS, 1984, 26 (03) :225-232
[5]   MINIMUM ABERRATION 2K-P DESIGNS [J].
FRIES, A ;
HUNTER, WG .
TECHNOMETRICS, 1980, 22 (04) :601-608
[6]   BINARY-CODES WITH SPECIFIED MINIMUM DISTANCE [J].
PLOTKIN, M .
IRE TRANSACTIONS ON INFORMATION THEORY, 1960, 6 (04) :445-450
[7]  
ROBILLARD P, 1968, I STATISTICS MIMEO S, V594
[8]   AN UPDATED TABLE OF MINIMUM-DISTANCE BOUNDS FOR BINARY LINEAR CODES [J].
VERHOEFF, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1987, 33 (05) :665-680