A ROW OF COUNTER-ROTATING VORTICES

被引:79
作者
MALLIER, R
MASLOWE, SA
机构
[1] Department of Mathematics and Statistics, McGill University, Montreal
来源
PHYSICS OF FLUIDS A-FLUID DYNAMICS | 1993年 / 5卷 / 04期
关键词
D O I
10.1063/1.858622
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In 1967, Stuart [J. Fluid Mech. 29, 417 (1967)] found an exact nonlinear solution of the inviscid, incompressible two-dimensional Navier-Stokes equations, representing an infinite row of identical vortices which are now known as Stuart vortices. In this Brief Communication, the corresponding result for an infinite row of counter-rotating vortices, i.e., a row of vortices of alternating sign, is presented. While for Stuart's solution, the streamfunction satisfied Liouville's equation, the streamfunction presented here satisfies the sinh-Gordon equation [Solitons: An Introduction (Cambridge U.P., London, 1989)]. The connection with Stuart's solution is discussed.
引用
收藏
页码:1074 / 1075
页数:2
相关论文
共 7 条