MARTIN CAPACITY FOR MARKOV-CHAINS

被引:25
作者
BENJAMINI, I
PEMANTLE, R
PERES, Y
机构
[1] UNIV WISCONSIN,DEPT MATH,MADISON,WI 53706
[2] UNIV CALIF BERKELEY,DEPT STAT,BERKELEY,CA 94720
关键词
CAPACITY; MARKOV CHAIN; HITTING PROBABILITY; BROWNIAN MOTION; TREE; PERCOLATION;
D O I
10.1214/aop/1176988187
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The probability that a transient Markov chain, or a Brownian path, will ever visit a given set Lambda is classically estimated using the capacity of Lambda with respect to the Green kernel G(x, y). We show that replacing the Green kernel by the Martin kernel G(x, y)/G(0, y) yields improved estimates, which are exact up to a factor of 2. These estimates are applied to random walks on lattices and also to explain a connection found by Lyons between capacity and percolation on trees.
引用
收藏
页码:1332 / 1346
页数:15
相关论文
共 24 条
[1]  
BARLOW MT, 1992, P LOND MATH SOC, V64, P125
[2]   TREE-INDEXED RANDOM-WALKS ON GROUPS AND 1ST PASSAGE PERCOLATION [J].
BENJAMINI, I ;
PERES, Y .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 98 (01) :91-112
[3]  
Erdos P, 1961, ILLINIOS J MATH, V5, P352
[4]   POLAR AND NONPOLAR SETS FOR A TREE INDEXED PROCESS [J].
EVANS, SN .
ANNALS OF PROBABILITY, 1992, 20 (02) :579-590
[5]  
FITZSIMMONS PJ, 1989, ANN I H POINCARE-PR, V25, P325
[6]  
Kahane J.P., 1985, SOME RANDOM SERIES F
[7]   RANDOM-WALKS ON DISCRETE-GROUPS - BOUNDARY AND ENTROPY [J].
KAIMANOVICH, VA ;
VERSHIK, AM .
ANNALS OF PROBABILITY, 1983, 11 (03) :457-490
[8]  
KAKUTANI S., 1944, P IMP ACAD TOKYO, V20, P648
[9]   A DISCRETE FRACTAL IN Z(+)(1) [J].
KHOSHNEVISAN, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (02) :577-584
[10]  
Kochen S., 1964, ILLINOIS J MATH, V8, P248