RECENT PROGRESS TOWARD A THEORY OF TENSOR OPERATORS IN UNITARY GROUPS

被引:208
作者
LOUCK, JD
机构
关键词
D O I
10.1119/1.1976225
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
引用
收藏
页码:3 / &
相关论文
共 99 条
[1]   ON REPRESENTATIONS OF SEMISIMPLE LIE GROUPS .2. [J].
BAIRD, GE ;
BIEDENHARN, LC .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (12) :1449-&
[2]   ON THE REPRESENTATIONS OF THE SEMISIMPLE LIE GROUPS .4. A CANONICAL CLASSIFICATION FOR TENSOR OPERATORS IN SU3 [J].
BAIRD, GE ;
BIEDENHARN, LC .
JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (12) :1730-+
[3]   ON THE REPRESENTATIONS OF THE SEMISIMPLE LIE GROUPS .3. THE EXPLICIT CONJUGATION OPERATION FOR SU [J].
BAIRD, GE ;
BIEDENHARN, LC .
JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (12) :1723-+
[4]   ON REPRESENTATIONS OF SEMISIMPLE LIE GROUPS .V. SOME EXPLICIT WIGNER OPERATORS FOR SU3 [J].
BAIRD, GE ;
BIEDENHA.LC .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (12) :1847-&
[5]   DEGENERACY OF THE N-DIMENSIONAL, ISOTROPIC, HARMONIC OSCILLATOR [J].
BAKER, GA .
PHYSICAL REVIEW, 1956, 103 (04) :1119-1120
[6]   ON REPRESENTATIONS OF ROTATION GROUP [J].
BARGMANN, V .
REVIEWS OF MODERN PHYSICS, 1962, 34 (04) :829-&
[7]   GROUP THEORY OF HARMONIC OSCILLATORS .1. THE COLLECTIVE MODES [J].
BARGMANN, V ;
MOSHINSKY, M .
NUCLEAR PHYSICS, 1960, 18 (04) :697-712
[8]   GROUP THEORY OF HARMONIC OSCILLATORS .2. INTEGRALS OF MOTION FOR QUADRUPOLE-QUADRUPOLE INTERXRION [J].
BARGMANN, V ;
MOSHINSKY, M .
NUCLEAR PHYSICS, 1961, 23 (02) :177-&
[9]  
Behrends R. E., 1968, Group theory and its applications, P541
[10]   SIMPLE GROUPS AND STRONG INTERACTION SYMMETRIES [J].
BEHRENDS, RE ;
DREITLEIN, J ;
LEE, W ;
FRONSDAL, C .
REVIEWS OF MODERN PHYSICS, 1962, 34 (01) :1-&