DIFFUSION ON THE TORUS FOR HAMILTONIAN MAPS

被引:5
|
作者
SIBONI, S
TURCHETTI, G
VAIENTI, S
机构
[1] INFN,SEZ BOLOGNA,BOLOGNA,ITALY
[2] CNRS MARSEILLE LUMINY,CTR PHYS THEOR,MARSEILLE,FRANCE
[3] UNIV TOULON & VAR,DEPT MATH,F-83130 LA GARDE,FRANCE
关键词
DECAY OF CORRELATION; DIFFUSION PROCESS;
D O I
10.1007/BF02186285
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a mapping of the torus T2 we propose a definition of the diffusion coefficient D suggested by the solution of the diffusion equation on T2. The definition of D, based on the limit of moments of the invariant measure, depends on the set OMEGA where an initial uniform distribution is assigned. For the algebraic automorphism of the torus the limit is proved to exist and to have the same value for almost all initial sets OMEGA in the subfamily of parallelograms. Numerical results show that it has the same value for arbitrary polygons Q and for arbitrary moments.
引用
收藏
页码:167 / 187
页数:21
相关论文
共 50 条
  • [41] MIMO Communications Based on Molecular Diffusion
    Meng, Ling-San
    Yeh, Ping-Cheng
    Chen, Kwang-Cheng
    Akyildiz, Ian F.
    2012 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2012, : 5380 - 5385
  • [42] Radiation-stimulated diffusion in solids
    V. A. Stepanov
    Technical Physics, 1998, 43 : 938 - 942
  • [43] Radiation-stimulated diffusion in solids
    Stepanov, VA
    TECHNICAL PHYSICS, 1998, 43 (08) : 938 - 942
  • [44] Time Estimation for Heat Diffusion on Graphs
    Teke, Oguzhan
    Vaidyanathan, P. P.
    2017 FIFTY-FIRST ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2017, : 1963 - 1967
  • [45] Nonparametric state estimation of diffusion processes
    Shoji, I
    BIOMETRIKA, 2002, 89 (02) : 451 - 456
  • [46] On unbiased density estimation for ergodic diffusion
    Kutoyants, YA
    STATISTICS & PROBABILITY LETTERS, 1997, 34 (02) : 133 - 140
  • [47] Semimartingale functions of a class of diffusion processes
    Mania, M
    Tevzadze, R
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2000, 45 (02) : 337 - 343
  • [48] Transport in diffusion-substitution systems
    E. Magyari
    B. Keller
    Heat and Mass Transfer, 1999, 35 : 49 - 52
  • [49] A diffusion inventory model for deteriorating items
    Benkherouf, L
    Boumenir, A
    Aggoun, L
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 138 (01) : 21 - 39
  • [50] A Note on the Uniform Ergodicity of Diffusion Processes
    Sandric, Nikola
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2025, 48 (03)