DIFFUSION ON THE TORUS FOR HAMILTONIAN MAPS

被引:5
|
作者
SIBONI, S
TURCHETTI, G
VAIENTI, S
机构
[1] INFN,SEZ BOLOGNA,BOLOGNA,ITALY
[2] CNRS MARSEILLE LUMINY,CTR PHYS THEOR,MARSEILLE,FRANCE
[3] UNIV TOULON & VAR,DEPT MATH,F-83130 LA GARDE,FRANCE
关键词
DECAY OF CORRELATION; DIFFUSION PROCESS;
D O I
10.1007/BF02186285
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a mapping of the torus T2 we propose a definition of the diffusion coefficient D suggested by the solution of the diffusion equation on T2. The definition of D, based on the limit of moments of the invariant measure, depends on the set OMEGA where an initial uniform distribution is assigned. For the algebraic automorphism of the torus the limit is proved to exist and to have the same value for almost all initial sets OMEGA in the subfamily of parallelograms. Numerical results show that it has the same value for arbitrary polygons Q and for arbitrary moments.
引用
收藏
页码:167 / 187
页数:21
相关论文
共 50 条
  • [31] Predicting integrals of diffusion processes
    Fuentes, M
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 90 (02) : 183 - 193
  • [32] Diffusion processes and mechanics of materials
    Matychak, YS
    Pavlyna, VS
    Fedirko, VM
    MATERIALS SCIENCE, 1998, 34 (03) : 304 - 314
  • [33] DYSON DIFFUSION ON A CURVED CONTOUR
    Zabrodin, A., V
    THEORETICAL AND MATHEMATICAL PHYSICS, 2023, 216 (02) : 1104 - 1109
  • [34] Conservativeness of diffusion processes with drift
    Kuwae, K
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (09) : 2743 - 2751
  • [35] A Note on the Uniform Ergodicity of Diffusion ProcessesA Note on the Uniform Ergodicity of Diffusion ProcessesN. Sandrić
    Nikola Sandrić
    Bulletin of the Malaysian Mathematical Sciences Society, 2025, 48 (3)
  • [36] A Nonlocal Fractional Peridynamic Diffusion Model
    Wang, Yuanyuan
    Sun, HongGuang
    Fan, Siyuan
    Gu, Yan
    Yu, Xiangnan
    FRACTAL AND FRACTIONAL, 2021, 5 (03)
  • [37] Diffusion Gaussian Mixture Audio Denoise
    Wang, Pu
    Li, Junhui
    Lie, Jialu
    Guo, Liangdong
    Zhang, Youshan
    INTERSPEECH 2024, 2024, : 2200 - 2204
  • [38] Diffusion processes that correspond to the hypergeometric equation
    Vagurina I.V.
    Journal of Mathematical Sciences, 2006, 133 (3) : 1249 - 1256
  • [39] Truncated dynamics and estimation of diffusion equations
    Darolles, S
    Gouriéroux, C
    JOURNAL OF ECONOMETRICS, 2001, 102 (01) : 1 - 22
  • [40] Diffusion with nonlocal Robin boundary conditions
    Arendt, Wolfgang
    Kunkel, Stefan
    Kunze, Markus
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2018, 70 (04) : 1523 - 1556