DIFFUSION ON THE TORUS FOR HAMILTONIAN MAPS

被引:5
|
作者
SIBONI, S
TURCHETTI, G
VAIENTI, S
机构
[1] INFN,SEZ BOLOGNA,BOLOGNA,ITALY
[2] CNRS MARSEILLE LUMINY,CTR PHYS THEOR,MARSEILLE,FRANCE
[3] UNIV TOULON & VAR,DEPT MATH,F-83130 LA GARDE,FRANCE
关键词
DECAY OF CORRELATION; DIFFUSION PROCESS;
D O I
10.1007/BF02186285
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a mapping of the torus T2 we propose a definition of the diffusion coefficient D suggested by the solution of the diffusion equation on T2. The definition of D, based on the limit of moments of the invariant measure, depends on the set OMEGA where an initial uniform distribution is assigned. For the algebraic automorphism of the torus the limit is proved to exist and to have the same value for almost all initial sets OMEGA in the subfamily of parallelograms. Numerical results show that it has the same value for arbitrary polygons Q and for arbitrary moments.
引用
收藏
页码:167 / 187
页数:21
相关论文
共 50 条
  • [21] RUIN PROBABILITIES IN A DIFFUSION ENVIRONMENT
    Grandell, Jan
    Schmidli, Hanspeter
    JOURNAL OF APPLIED PROBABILITY, 2011, 48A : 39 - 50
  • [22] Lundberg inequalities in a diffusion environment
    Palmowski, Z
    INSURANCE MATHEMATICS & ECONOMICS, 2002, 31 (02) : 303 - 313
  • [23] Nonlinear Equations in Diffusion Theory
    Ya. I. Belopolskaya
    Journal of Mathematical Sciences, 2003, 118 (6) : 5513 - 5524
  • [24] Diffusion with nonlocal boundary conditions
    Arendt, Wolfgang
    Kunkel, Stefan
    Kunze, Markus
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (07) : 2483 - 2507
  • [25] Dyson diffusion on a curved contour
    A. V. Zabrodin
    Theoretical and Mathematical Physics, 2023, 216 : 1104 - 1109
  • [26] Smooth diffusion measures and their transformations
    Belopolskaya Y.I.
    Journal of Mathematical Sciences, 2002, 109 (6) : 2047 - 2060
  • [27] Conditional estimation of diffusion processes
    Li, MQ
    Pearson, ND
    Poteshman, AM
    JOURNAL OF FINANCIAL ECONOMICS, 2004, 74 (01) : 31 - 66
  • [28] Diffusion processes and mechanics of materials
    Ya. S. Matychak
    V. S. Pavlyna
    V. M. Fedirko
    Materials Science, 1998, 34 : 304 - 314
  • [29] Diffusion copulas: Identification and estimation
    Bu, Ruijun
    Hadri, Kaddour
    Kristensen, Dennis
    JOURNAL OF ECONOMETRICS, 2021, 221 (02) : 616 - 643
  • [30] Information diffusion with network structures
    Zhu, Xuening
    Pan, Rui
    Zhang, Yuxuan
    Chen, Yu
    Mi, Wenquan
    Wang, Hansheng
    STATISTICS AND ITS INTERFACE, 2021, 14 (02) : 115 - 129