DIFFUSION ON THE TORUS FOR HAMILTONIAN MAPS

被引:5
|
作者
SIBONI, S
TURCHETTI, G
VAIENTI, S
机构
[1] INFN,SEZ BOLOGNA,BOLOGNA,ITALY
[2] CNRS MARSEILLE LUMINY,CTR PHYS THEOR,MARSEILLE,FRANCE
[3] UNIV TOULON & VAR,DEPT MATH,F-83130 LA GARDE,FRANCE
关键词
DECAY OF CORRELATION; DIFFUSION PROCESS;
D O I
10.1007/BF02186285
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a mapping of the torus T2 we propose a definition of the diffusion coefficient D suggested by the solution of the diffusion equation on T2. The definition of D, based on the limit of moments of the invariant measure, depends on the set OMEGA where an initial uniform distribution is assigned. For the algebraic automorphism of the torus the limit is proved to exist and to have the same value for almost all initial sets OMEGA in the subfamily of parallelograms. Numerical results show that it has the same value for arbitrary polygons Q and for arbitrary moments.
引用
收藏
页码:167 / 187
页数:21
相关论文
共 50 条
  • [11] Optimal Diffusion Processes
    Jafarizadeh, Saber
    IEEE CONTROL SYSTEMS LETTERS, 2018, 2 (03): : 465 - 470
  • [12] Diffusion network embedding
    Shi, Yong
    Lei, Minglong
    Yang, Hong
    Niu, Lingfeng
    PATTERN RECOGNITION, 2019, 88 : 518 - 531
  • [13] Markov extensions and decay of correlations for certain Henon maps
    Benedicks, M
    Young, LS
    ASTERISQUE, 2000, (261) : 13 - 56
  • [14] Controllable uncertain opinion diffusion under confidence bound and unpredicted diffusion probability
    Yan, Fuhan
    Li, Zhaofeng
    Jiang, Yichuan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 449 : 85 - 100
  • [15] A note on the transition from diffusion with the flow to diffusion against the flow, for first passage times in singularly perturbed drift-diffusion models
    Knessl, Charles
    Yao, Haishen
    ASYMPTOTIC ANALYSIS, 2015, 91 (3-4) : 205 - 231
  • [16] ERP Diffusion and Mimetic Behaviors
    Leroux, Erick
    Pupion, Pierre-Charles
    Sahut, Jean-Michel
    INTERNATIONAL JOURNAL OF BUSINESS, 2011, 16 (02): : 111 - 132
  • [17] On multidimensional generalized diffusion processes
    H. M. Shevchenko
    Ukrainian Mathematical Journal, 2003, 55 (9) : 1560 - 1566
  • [18] Diffusion for Natural Image Matting
    Hu, Yihan
    Lin, Yiheng
    Wang, Wei
    Zhao, Yao
    Wei, Yunchao
    Shi, Humphrey
    COMPUTER VISION-ECCV 2024, PT LVII, 2025, 15115 : 181 - 199
  • [19] Diffusion diagnostics of electrochemical cell
    Reichl, T.
    Hrzina, P.
    JOURNAL OF ENERGY STORAGE, 2018, 20 : 492 - 496
  • [20] Diffusion processes with identical bridges
    Borodin A.N.
    Journal of Mathematical Sciences, 2005, 127 (1) : 1687 - 1695