DIFFUSION ON THE TORUS FOR HAMILTONIAN MAPS

被引:5
|
作者
SIBONI, S
TURCHETTI, G
VAIENTI, S
机构
[1] INFN,SEZ BOLOGNA,BOLOGNA,ITALY
[2] CNRS MARSEILLE LUMINY,CTR PHYS THEOR,MARSEILLE,FRANCE
[3] UNIV TOULON & VAR,DEPT MATH,F-83130 LA GARDE,FRANCE
关键词
DECAY OF CORRELATION; DIFFUSION PROCESS;
D O I
10.1007/BF02186285
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a mapping of the torus T2 we propose a definition of the diffusion coefficient D suggested by the solution of the diffusion equation on T2. The definition of D, based on the limit of moments of the invariant measure, depends on the set OMEGA where an initial uniform distribution is assigned. For the algebraic automorphism of the torus the limit is proved to exist and to have the same value for almost all initial sets OMEGA in the subfamily of parallelograms. Numerical results show that it has the same value for arbitrary polygons Q and for arbitrary moments.
引用
收藏
页码:167 / 187
页数:21
相关论文
共 50 条
  • [1] Order-preservation and Positive Correlations for Diffusion Processes on Torus
    王凤雨
    严士健
    东北数学, 1994, (02) : 149 - 158
  • [2] Stochastic averaging of quasi-Hamiltonian systems
    Zhu, WQ
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1996, 39 (01): : 97 - 107
  • [3] Stochastic averaging of quasi-Hamiltonian systems
    朱位秋
    Science China Mathematics, 1996, (01) : 97 - 107
  • [4] Random perturbations of 2-dimensional hamiltonian flows
    Leonid Koralov
    Probability Theory and Related Fields, 2004, 129 : 37 - 62
  • [5] Random perturbations of 2-dimensional Hamiltonian flows
    Koralov, L
    PROBABILITY THEORY AND RELATED FIELDS, 2004, 129 (01) : 37 - 62
  • [6] A Generalized Diffusion Equation: Solutions and Anomalous Diffusion
    Lenzi, Ervin K.
    Somer, Aloisi
    Zola, Rafael S.
    da Silva, Luciano R.
    Lenzi, Marcelo K.
    FLUIDS, 2023, 8 (02)
  • [7] Controlling the diffusion process via time-variable diffusion coefficient
    E. L. Pankratov
    Technical Physics, 2004, 49 : 114 - 118
  • [8] Sb diffusion in α-Fe
    R.A. Pérez
    D.N. Torres
    F. Dyment
    Applied Physics A, 2005, 81 : 787 - 791
  • [9] The moments of a diffusion process
    Yun, Youngyun
    STATISTICS & PROBABILITY LETTERS, 2018, 138 : 36 - 41
  • [10] Crease enhancement diffusion
    Solé, AF
    López, A
    Sapiro, G
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2001, 84 (02) : 241 - 248