FRAMES WITH BLOCK SIZE-4

被引:59
作者
REES, RS
STINSON, DR
机构
[1] MEM UNIV NEWFOUNDLAND, DEPT MATH & STAT, ST JOHNS A1C 5S7, NEWFOUNDLAND, CANADA
[2] UNIV NEBRASKA, DEPT ELECT & COMP ENGN, LINCOLN, NE 68588 USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 1992年 / 44卷 / 05期
关键词
D O I
10.4153/CJM-1992-063-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the spectrum for frames with block size four and discuss several applications to the construction of other combinatorial designs. Our main result is that a frame of type h(u), having blocks of size four, exists if and only if u greater-than-or-equal-to 5, h = 0 mod 3 and h(u - 1) = 0 mod 4, except possibly where (i) h = 9 and u is-an-element-of {13,17.29,33,93,113,133,153,173,193}; (ii) h = 0 mod 12 and u is-an-element-of {8,12}, h = 36 and u is-an-element-of {7,18,23,28,33,38,43,48}, h = 24 or 120 and u is-an-element-of {7}, h = 72 and u is-an-element-of 2Z+ or {n : n = 3 mod 4 and n less-than-or-equal-to 527} or {563}; or (iii) h = 6 mod 12 and u is-an-element-of ({17,29,33,563} or {n : n = 3 or 11 mod 12 and n less-than-or-equal-to 527} or {n : n = 7 mod 12 and n less-than-or-equal-to 259}), h = 18. Additionally, we give a new recursive construction for resolvable group-divisible designs from frames: if there is a resolvable k-GDD of type g(u), a k-frame of type (mg)v where u greater-than-or-equal-to m + 1, and a resolvable TD(k, mv) then there is a resolvable k-GDD of type (mg)uv. We use this to construct some new resolvable GDDs with group size three and block size four.
引用
收藏
页码:1030 / 1049
页数:20
相关论文
共 32 条
[1]  
ABEL RJR, 4 MUTUALLY ORTHOGONA
[2]  
ANDERSON BA, 1980, ARS COMBINATORIA, V9, P29
[3]  
ASSAF A, 1987, UTILITAS MATHEMATICA, V32, P67
[4]   RESOLVABLE GROUP DIVISIBLE DESIGNS WITH BLOCK SIZE 3 [J].
ASSAF, AM ;
HARTMAN, A .
DISCRETE MATHEMATICS, 1989, 77 (1-3) :5-20
[5]  
BROUWER AE, 1978, ZW81 MATH CENT REP
[6]  
CAI T, 1990, LECTURE NOTES PURE A, V126
[7]  
Doyen J., 1973, Discrete Mathematics, V5, P229, DOI 10.1016/0012-365X(73)90139-8
[8]  
FURINO SC, 1990, THESIS U WATERLOO
[9]  
HAMEL AM, SPECTRUM PBD 5 K STA
[10]  
Hanani H., 1972, DISCRETE MATH, V3, P343