NONLINEAR POTENTIALS FOR HAMILTON-JACOBI-BELLMAN EQUATIONS

被引:1
|
作者
NOSOVSKIJ, GV
机构
[1] Moscow, 101000
关键词
STOCHASTIC CONTROL; HAMILTON-JACOBI-BELLMAN EQUATION; NONLINEAR POTENTIALS; NONLINEAR PDE;
D O I
10.1007/BF00992753
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A formalism is suggested which makes it possible to investigate Hamilton-Jacobi-Bellman-type equations of general form. For such equations, we construct certain families of nonlinear operators, which we call as 'nonlinear potentials'. The suggested method of investigation for fully nonlinear equations is based on only information about linear equations and their solutions. This is a generalization of N. V. Krylov's approach.
引用
收藏
页码:101 / 123
页数:23
相关论文
共 50 条
  • [1] Nonlinear potentials for Hamilton-Jacobi-Bellman equations .2.
    Nosovskij, GV
    ACTA APPLICANDAE MATHEMATICAE, 1997, 46 (01) : 29 - 48
  • [2] Hamilton-Jacobi-Bellman Equations
    Festa, Adriano
    Guglielmi, Roberto
    Hermosilla, Christopher
    Picarelli, Athena
    Sahu, Smita
    Sassi, Achille
    Silva, Francisco J.
    OPTIMAL CONTROL: NOVEL DIRECTIONS AND APPLICATIONS, 2017, 2180 : 127 - 261
  • [3] ON THE HAMILTON-JACOBI-BELLMAN EQUATIONS
    LIONS, PL
    ACTA APPLICANDAE MATHEMATICAE, 1983, 1 (01) : 17 - 41
  • [4] DEGENERATE HAMILTON-JACOBI-BELLMAN EQUATIONS
    LIONS, PL
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 289 (05): : 329 - 332
  • [5] STOCHASTIC HAMILTON-JACOBI-BELLMAN EQUATIONS
    PENG, SG
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1992, 30 (02) : 284 - 304
  • [6] Hamilton-Jacobi-Bellman equations on time scales
    Department of Mathematics, Guizhou University, Guiyang, 550025, China
    不详
    Math. Comput. Model., 9-10 (2019-2028):
  • [7] Hamilton-Jacobi-Bellman equations and optimal control
    Dolcetta, IC
    VARIATIONAL CALCULUS, OPTIMAL CONTROL AND APPLICATIONS, 1998, 124 : 121 - 132
  • [8] Verification theorems for Hamilton-Jacobi-Bellman equations
    Garavello, M
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (05) : 1623 - 1642
  • [9] Hamilton-Jacobi-Bellman equations on time scales
    Zhan, Zaidong
    Wei, Wei
    Xu, Honglei
    MATHEMATICAL AND COMPUTER MODELLING, 2009, 49 (9-10) : 2019 - 2028
  • [10] A relaxation scheme for Hamilton-Jacobi-Bellman equations
    Zhou, Shuzi
    Zou, Zhanyong
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (01) : 806 - 813