NUMBER OF HAMILTONIAN CYCLES IN A MAXIMAL PLANAR GRAPH

被引:18
作者
HAKIMI, SL
SCHMEICHEL, EF
THOMASSEN, C
机构
[1] AARHUS UNIV,DK-8000 AARHUS C,DENMARK
[2] CALIF STATE UNIV SAN JOSE,SAN JOSE,CA 95192
关键词
D O I
10.1002/jgt.3190030407
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the problem of the minimum number of Hamiltonian cycles that could be present in a Hamiltonian maximal planar graph on p vertices. In particular, we construct a p‐vertex maximal planar graph containing exactly four Hamiltonian cycles for every p ≥ 12. We also prove that every 4‐connected maximal planar graph on p vertices contains at least p/(log2 p) Hamiltonian cycles. Copyright © 1979 Wiley Periodicals, Inc., A Wiley Company
引用
收藏
页码:365 / 370
页数:6
相关论文
共 4 条
[1]  
[Anonymous], 1931, ANN MATH, DOI [10.2307/1968197, DOI 10.2307/1968197]
[2]  
Barnette D., 1970, J COMBINATORIAL THEO, V9, P54, DOI DOI 10.1016/S0021-9800(70)80054-0
[3]   NUMBER OF CYCLES OF LENGTH-K IN A MAXIMAL PLANAR GRAPH [J].
HAKIMI, SL ;
SCHMEICHEL, EF .
JOURNAL OF GRAPH THEORY, 1979, 3 (01) :69-86
[4]   SIMPLE PATHS ON POLYHEDRA [J].
MOON, JW ;
MOSER, L .
PACIFIC JOURNAL OF MATHEMATICS, 1963, 13 (02) :629-&