GEOMETRIC THEORY FOR QR, LU AND POWER ITERATIONS

被引:47
作者
PARLETT, BN
POOLE, WG
机构
[1] UNIV CALIF,DEPT COMP SCI,BERKELEY,CA 94720
[2] COLL WILLIAM & MARY,DEPT MATH,WILLIAMSBURG,VA 23185
关键词
D O I
10.1137/0710035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:389 / 412
页数:24
相关论文
共 27 条
[1]   ON MODERN MATRIX ITERATION PROCESSES OF BERNOULLI AND GRAEFFE TYPE [J].
BAUER, FL .
JOURNAL OF THE ACM, 1958, 5 (03) :246-257
[2]  
Bauer Friedrich L., 1957, Z ANGEW MATH PHYS, V8, P214, DOI DOI 10.1007/BF01600502
[3]  
BUUREMA HJ, 1970, THESIS RIJKSUNIVERSI
[4]   ITERATIVE PROCEDURES RELATED TO RELAXATION METHODS FOR EIGENVALUE PROBLEMS [J].
CRANDALL, SH .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1951, 207 (1090) :416-423
[5]   THE QR TRANSFORMATION .2. [J].
FRANCIS, JGF .
COMPUTER JOURNAL, 1962, 4 (04) :332-345
[6]  
HOFFMAN K, 1970, LINEAR ALGEBRA
[7]  
Householder A. S., 1964, THEORY MATRICES NUME
[8]  
Kublanovskaya VN., 1961, Z VYCISL MAT MAT FIZ, V1, P555
[9]  
MUIR T, 1960, THEORY DETERMINA 733
[10]  
Ostrowski A., 1955, MATH Z, V63, P2