VERTEX OPERATORS AND HALL-LITTLEWOOD SYMMETRICAL FUNCTIONS

被引:102
作者
JING, NH
机构
[1] INST ADV STUDY,SCH MATH,PRINCETON,NJ 08540
[2] UNIV CALIF SAN DIEGO,LA JOLLA,CA 92093
基金
美国国家科学基金会;
关键词
D O I
10.1016/0001-8708(91)90072-F
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider vertex operators on space V with a parameter t. Their components form an associative algebra which is a generalization of the Clifford algebra. A distinguished orthogonal basis of V is proved to be the Hall-Littlewood symmetric functions. We show that Kostka-Foulkes polynomials (or certain Kazhdan-Lusztig polynomials for the affine Weyl group of type A) are matrix coefficients on the space V. We also obtain certain generating functions for the product of Hall-Littlewood functions and the Kostka-Foulkes polynomials. © 1991.
引用
收藏
页码:226 / 248
页数:23
相关论文
共 13 条
[1]  
FRENKEL I, 1988, VERTEX OPERATOR ALGE
[2]   VERTEX REPRESENTATIONS OF QUANTUM AFFINE ALGEBRAS [J].
FRENKEL, IB ;
JING, NH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (24) :9373-9377
[3]  
Green J. A., 1955, T AM MATH SOC, V80, P402
[4]  
HOFFMAN P, 1989, ADV MATH, V73, P135
[5]  
JING N, 1989, THESIS YALE U
[6]  
JING N, 1991, J ALGEBRA, V138
[7]   TWISTED VERTEX REPRESENTATIONS OF QUANTUM AFFINE ALGEBRAS [J].
JING, NH .
INVENTIONES MATHEMATICAE, 1990, 102 (03) :663-690
[8]   REPRESENTATIONS OF COXETER GROUPS AND HECKE ALGEBRAS [J].
KAZHDAN, D ;
LUSZTIG, G .
INVENTIONES MATHEMATICAE, 1979, 53 (02) :165-184
[9]  
Littlewood DE., 1961, P LOND MATH SOC, V11, P485, DOI DOI 10.1112/PLMS/S3-11.1.485
[10]   GREEN POLYNOMIALS AND SINGULARITIES OF UNIPOTENT CLASSES [J].
LUSZTIG, G .
ADVANCES IN MATHEMATICS, 1981, 42 (02) :169-178