QUANTUM PERSISTENT CURRENTS AND CLASSICAL PERIODIC-ORBITS

被引:32
作者
VONOPPEN, F [1 ]
RIEDEL, EK [1 ]
机构
[1] UNIV WASHINGTON, DEPT PHYS, SEATTLE, WA 98195 USA
来源
PHYSICAL REVIEW B | 1993年 / 48卷 / 12期
关键词
D O I
10.1103/PhysRevB.48.9170
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Semiclassical theory relates mesoscopic persistent currents to classical periodic orbits. This is used to demonstrate that persistent currents are a sensitive probe of quantum chaos, exhibiting different universal dependences on the Fermi velocity for integrable and for completely chaotic ballistic microstructures. A study of the Sinai-billiard geometry reveals that the universality classes do not coincide with those of the spectral spacing distribution. Our conclusions are supported by numerical calculations.
引用
收藏
页码:9170 / 9173
页数:4
相关论文
共 25 条
[1]   PERSISTENT DIFFERENCES BETWEEN CANONICAL AND GRAND CANONICAL AVERAGES IN MESOSCOPIC ENSEMBLES - LARGE PARAMAGNETIC ORBITAL SUSCEPTIBILITIES [J].
ALTSHULER, BL ;
GEFEN, Y ;
IMRY, Y .
PHYSICAL REVIEW LETTERS, 1991, 66 (01) :88-91
[2]   COHERENCE AND PERSISTENT CURRENTS IN MESOSCOPIC RINGS [J].
AMBEGAOKAR, V ;
ECKERN, U .
PHYSICAL REVIEW LETTERS, 1990, 65 (03) :381-384
[3]  
[Anonymous], 1970, RUSS MATH SURV, DOI [10.1070/RM1970v025n02ABEH003794, DOI 10.1070/RM1970V025N02ABEH003794]
[4]   SEMICLASSICAL ANALYSIS OF SPECTRAL CORRELATIONS IN MESOSCOPIC SYSTEMS [J].
ARGAMAN, N ;
IMRY, Y ;
SMILANSKY, U .
PHYSICAL REVIEW B, 1993, 47 (08) :4440-4457
[6]   QUANTIZING A CLASSICALLY ERGODIC SYSTEM - SINAI BILLIARD AND THE KKR METHOD [J].
BERRY, MV .
ANNALS OF PHYSICS, 1981, 131 (01) :163-216
[7]  
BOHIGAS O, 1991, CHAOS QUANTUM PHYSIC, P201
[8]   JOSEPHSON BEHAVIOR IN SMALL NORMAL ONE-DIMENSIONAL RINGS [J].
BUTTIKER, M ;
IMRY, Y ;
LANDAUER, R .
PHYSICS LETTERS A, 1983, 96 (07) :365-367
[9]   MAGNETIC RESPONSE OF A SINGLE, ISOLATED GOLD LOOP [J].
CHANDRASEKHAR, V ;
WEBB, RA ;
BRADY, MJ ;
KETCHEN, MB ;
GALLAGHER, WJ ;
KLEINSASSER, A .
PHYSICAL REVIEW LETTERS, 1991, 67 (25) :3578-3581
[10]   PERSISTENT CURRENTS IN MESOSCOPIC RINGS AND CYLINDERS [J].
CHEUNG, HF ;
RIEDEL, EK ;
GEFEN, Y .
PHYSICAL REVIEW LETTERS, 1989, 62 (05) :587-590