ON PROJECTIVELY RATIONAL LIFTS OF MOD 7 GALOIS REPRESENTATIONS
被引:0
作者:
Burhanuddin, Iftikhar
论文数: 0引用数: 0
h-index: 0
机构:
UCLA, Math Dept, 520 Portola Plaza,Math Sci Bldg 6363, Los Angeles, CA 90095 USAUCLA, Math Dept, 520 Portola Plaza,Math Sci Bldg 6363, Los Angeles, CA 90095 USA
Burhanuddin, Iftikhar
[1
]
Dieulefait, Luis
论文数: 0引用数: 0
h-index: 0
机构:UCLA, Math Dept, 520 Portola Plaza,Math Sci Bldg 6363, Los Angeles, CA 90095 USA
Dieulefait, Luis
机构:
[1] UCLA, Math Dept, 520 Portola Plaza,Math Sci Bldg 6363, Los Angeles, CA 90095 USA
来源:
JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS
|
2011年
/
20卷
/
01期
We consider the problem of constructing "projectively rational" lifts of odd, two-dimensional Galois representations with values in F7. Using modular forms, in particular, the theory of congruences, we compute such lifts for many examples of mod 7 representations thus giving evidence that suggests that such lifts may always exist. We also consider the invariance after twist (weight change) of the existence of such lifts.