UNIQUENESS OF LIMIT-CYCLES IN GAUSS-TYPE MODELS OF PREDATOR-PREY SYSTEMS

被引:0
作者
YANG, K
FREEDMAN, HI
机构
关键词
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:67 / 84
页数:18
相关论文
共 25 条
[1]   STABLE LIMIT CYCLES IN PREY-PREDATOR POPULATIONS [J].
ALBRECHT, F ;
GATZKE, H ;
WAX, N .
SCIENCE, 1973, 181 (4104) :1073-1074
[2]   PREY SPECIES REPLACEMENT ALONG A GRADIENT OF NUTRIENT ENRICHMENT - GRAPHICAL APPROACH [J].
ARMSTRONG, RA .
ECOLOGY, 1979, 60 (01) :76-84
[3]   EFFECTS OF PREDATOR FUNCTIONAL RESPONSE AND PREY PRODUCTIVITY ON PREDATOR-PREY STABILITY - GRAPHICAL APPROACH [J].
ARMSTRONG, RA .
ECOLOGY, 1976, 57 (03) :609-612
[4]   FUGITIVE SPECIES - EXPERIMENTS WITH FUNGI AND SOME THEORETICAL CONSIDERATIONS [J].
ARMSTRONG, RA .
ECOLOGY, 1976, 57 (05) :953-963
[5]   UNIQUENESS OF A LIMIT-CYCLE FOR A PREDATOR-PREY SYSTEM [J].
CHENG, KS .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1981, 12 (04) :541-548
[6]  
CHENG KS, 1981, J MATH BIOL, V12, P115, DOI 10.1007/BF00275207
[7]  
CHERKAS LA, 1970, DIFF EQUAT, V6, P891
[8]  
Freedman H. I., 1980, DETERMINISTIC MATH M
[9]   PERTURBATION OF 2-DIMENSIONAL PREDATOR-PREY EQUATIONS [J].
FREEDMAN, HI ;
WALTMAN, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1975, 28 (01) :1-10
[10]   GLOBAL STABILITY AND PERSISTENCE OF SIMPLE FOOD-CHAINS [J].
FREEDMAN, HI ;
SO, JWH .
MATHEMATICAL BIOSCIENCES, 1985, 76 (01) :69-86