A BGK MODEL FOR SMALL PRANDTL NUMBER IN THE NAVIER-STOKES APPROXIMATION

被引:29
作者
BOUCHUT, F [1 ]
PERTHAME, B [1 ]
机构
[1] UNIV ORLEANS,DEPT MATH,F-45067 ORLEANS 2,FRANCE
关键词
BOLTZMANN EQUATION; COMPRESSIBLE NAVIER-STOKES EQUATIONS; PRANDTL NUMBER; ENTROPY;
D O I
10.1007/BF01048094
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a BGK-type collision model which approximates, by a Chapman-Enskog expansion, the compressible Navier-Stokes equations with a Prandtl number that can be chosen arbitrarily between 0 and 1. This model has the basic properties of the Boltzmann equation, including the H-theorem, but contains an extra parameter in comparison with the standard BGK model. This parameter is introduced multiplying the collision operator by a nonlinear functional of the distribution function. It is adjusted to the Prandtl number.
引用
收藏
页码:191 / 207
页数:17
相关论文
共 17 条
[1]  
BARDOS C, 1987, MAT APL COMPUT, V6, P97
[2]   A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS [J].
BHATNAGAR, PL ;
GROSS, EP ;
KROOK, M .
PHYSICAL REVIEW, 1954, 94 (03) :511-525
[3]   THE FLUID DYNAMIC LIMIT OF THE NON-LINEAR BOLTZMANN-EQUATION [J].
CAFLISCH, RE .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (05) :651-666
[4]  
Cercignani C., 1988, BOLTZMANN EQUATION I, P95
[5]  
Chapman S., 1939, MATH THEORY NONUNIFO
[6]  
DESHPANDE SM, 1986, NASA2613 TECHN PAP
[7]   REGULARITY OF THE MOMENTS OF THE SOLUTION OF A TRANSPORT-EQUATION [J].
GOLSE, F ;
LIONS, PL ;
PERTHAME, B ;
SENTIS, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1988, 76 (01) :110-125
[8]  
GRAD H, 1963, 3RD S RAR GAS DYN, P26
[9]   FLUID-DYNAMICAL APPROXIMATION TO THE BOLTZMANN-EQUATION AT THE LEVEL OF THE NAVIER-STOKES EQUATION [J].
KAWASHIMA, S ;
MATSUMURA, A ;
NISHIDA, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 70 (02) :97-124
[10]  
KLIMONTOVICH YL, IN PRESS PHYSICA A