SOME GEOMETRIC CONSTANTS AND THE EXTREME POINTS OF THE UNIT BALL OF BANACH SPACES

被引:0
作者
Mizuguchi, Hiroyasu [1 ]
机构
[1] Niigata Univ, Dept Math Sci, Grad Sch Sci & Technol, Niigata 9502181, Japan
来源
REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES | 2015年 / 60卷 / 01期
关键词
absolute normalized norm; psi-direct sum; extreme point; von Neumann-Jordan constant; James type constant; von Neumann-Jordan type constant;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 2009, Mitani and Saito introduced and studied a geometric constant gamma X,(psi) of a Banach space X, by using the notion of psi-ditect sum. For t is an element of[0,1], the constant gamma X,(psi)(t) is defined as a supremum taken over all elements in the unit sphere of X. In this paper, we obtain that, for a Banach space which has a predual Banach space, the supremum can be taken over all extreme points of the unit ball. Then we calculate gamma X,(psi)(t) for some Banach spaces.
引用
收藏
页码:59 / 70
页数:12
相关论文
共 23 条
[1]  
Alonso J., 2006, REV ROUMAINE MATH PU, V51, P135
[2]  
BONSALL F, 1973, LONDON MATH SOC LECT, V10
[3]   The von Neumann-Jordan constant for the Lebesgue spaces [J].
Clarkson, JA .
ANNALS OF MATHEMATICS, 1937, 38 :114-115
[4]   ON THE GEOMETRY OF SPHERES IN NORMED LINEAR-SPACES [J].
GAO, J ;
LAU, KS .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1990, 48 :101-112
[5]   On inner products in linear, metric spaces [J].
Jordan, P ;
Neumann, JV .
ANNALS OF MATHEMATICS, 1935, 36 :719-723
[6]   On ψ-direct sums of Banach spaces and convexity [J].
Kato, M ;
Saito, KS ;
Tamura, T .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2003, 75 :413-422
[7]  
Kato M, 2004, MATH INEQUAL APPL, V7, P429
[8]  
Kato M., 2010, REND CIRC MAT PA 2 S, V82, P75
[9]  
Megginson R. E., 1998, GRAD TEXT M, V183, DOI 10.1007/978-1-4612-0603-3
[10]  
Mitani K.-I., 2009, COMMENT MATH HELV, V49, P3