A HAMILTONIAN-JACOBI ALGORITHM

被引:15
作者
BYERS, R
机构
[1] Department of Mathematics, University of Kansas., Lawrence
关键词
D O I
10.1109/9.53524
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note adapts the nonsymmetric Jacobi iteration to the special structure of Hamiltonian matrices. This Hamiltonian-Jacobi algorithm uses symplectic-unitary similarity transformations to solve algebraic Riccati equations through the Hamiltonian-Schur form. It preserves Hamiltonian structure without using a condensed form. Although it converges too slowly for use on conventional serial computers, it may be attractive for some highly parallel architectures. © 1990 IEEE
引用
收藏
页码:566 / 570
页数:5
相关论文
共 18 条
[1]  
[Anonymous], 1963, J ELECT CONTROL, DOI DOI 10.1080/00207216308937540
[2]   A SYMPLECTIC QR LIKE ALGORITHM FOR THE SOLUTION OF THE REAL ALGEBRAIC RICCATI EQUATION [J].
BUNSEGERSTNER, A ;
MEHRMANN, V .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1986, 31 (12) :1104-1113
[3]   MATRIX FACTORIZATIONS FOR SYMPLECTIC QR-LIKE METHODS [J].
BUNSEGERSTNER, A .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 83 :49-77
[4]  
BUNSEGERSTNER A, 1989, THESIS U BIELEFLED B
[5]  
BUNSEGERSTNER A, 1986, THESIS U BIELEFELD B
[6]  
BUNSEGERSTNER A, 1988, METHODS OPERATIONS R
[7]  
BURGOYNE N, 1976, 1976 AM RES CTR NASA, P483
[8]   A HAMILTONIAN QR ALGORITHM [J].
BYERS, R .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (01) :212-229
[9]  
FRANCIS J, 1962, COMPUT J, V5, P332
[10]  
Golub G.H., 1983, MATRIX COMPUTATIONS