ON A LIOUVILLE-MASTER EQUATION FORMULATION OF OPEN QUANTUM-SYSTEMS

被引:5
作者
BREUER, HP
PETRUCCIONE, F
机构
[1] Fakultät für Physik, Albert-Ludwigs-Universität, Freiburg im Breisgau, D-79104
来源
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER | 1995年 / 98卷 / 01期
关键词
D O I
10.1007/BF01318288
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The dynamics of open quantum systems is formulated in terms of a probability distribution on the underlying Hilbert space. Defining the time-evolution of this probability distribution by means of a Liouville-master equation the time-dependent wave function of the system becomes a stochastic Markov process in the sense of classical probability theory. It is shown that the equation of motion for the two-point correlation function of the random wave function yields the quantum master equation for the statistical operator. Stochastic simulations of the Liouville-master equation are performed for a simple example from quantum optics and are shown to be in perfect agreement with the analytical solution of the corresponding equation for the statistical operator.
引用
收藏
页码:139 / 145
页数:7
相关论文
共 35 条
[1]  
Alicki R., 1987, QUANTUM DYNAMICAL SE, V286
[2]  
ALLEN L, 1975, MONOGRAPHS TEXTS PHY, V38
[3]   QUANTUM-MECHANICS AND INTEGRATION IN HILBERT-SPACE [J].
BACH, A .
PHYSICS LETTERS A, 1979, 73 (04) :287-288
[4]   MEASUREMENT THEORY AND STOCHASTIC DIFFERENTIAL-EQUATIONS IN QUANTUM-MECHANICS [J].
BARCHIELLI, A .
PHYSICAL REVIEW A, 1986, 34 (03) :1642-1649
[5]   BEWEGUNGSGESETZE NICHT ABGESCHLOSSENER QUANTENSYSTEME [J].
BAUSCH, R .
ZEITSCHRIFT FUR PHYSIK, 1966, 193 (02) :246-&
[6]   STOCHASTIC SIMULATIONS OF HIGH-REYNOLDS-NUMBER TURBULENCE IN 2 DIMENSIONS [J].
BREUER, HP ;
PETRUCCIONE, F .
PHYSICAL REVIEW E, 1994, 50 (04) :2795-2801
[7]   BURGERS TURBULENCE MODEL AS A STOCHASTIC DYNAMIC SYSTEM - MASTER EQUATION AND SIMULATION [J].
BREUER, HP ;
PETRUCCIONE, F .
PHYSICAL REVIEW E, 1993, 47 (03) :1803-1814
[8]   A MASTER EQUATION APPROACH TO FLUCTUATING HYDRODYNAMICS - HEAT-CONDUCTION [J].
BREUER, HP ;
PETRUCCIONE, F .
PHYSICS LETTERS A, 1994, 185 (04) :385-389
[9]  
BREUER HP, 1994, IN PRESS PHYS REV E
[10]  
CARMICHAEL H, 1993, LECTURE NOTES PHYSIC, V18