THE CONE OF DISTANCE MATRICES

被引:31
作者
HAYDEN, TL
LIU, WM
TARAZAGA, P
机构
[1] INDIANA UNIV PURDUE UNIV,DEPT MATH SCI,INDIANAPOLIS,IN 46205
[2] UNIV PUERTO RICO,DEPT MATEMAT,MAYAGUEZ,PR 00709
基金
美国国家科学基金会;
关键词
D O I
10.1016/0024-3795(91)90068-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The geometry of the cone of Euclidean distance matrices (EDMs) is analyzed using a new characterization of an EDM. The facial structure and the angle that EDMs of embedding dimension one make with the center ray are found. This result follows from a complete analysis of the critical points of the distance function in Frobenius norm from the matrix E consisting of zero diagonal and ones elsewhere to the EDMs of embedding dimension one. © 1991.
引用
收藏
页码:153 / 169
页数:17
相关论文
共 30 条
[1]   CONES OF DIAGONALLY DOMINANT MATRICES [J].
BARKER, GP ;
CARLSON, D .
PACIFIC JOURNAL OF MATHEMATICS, 1975, 57 (01) :15-32
[2]   THEORY OF CONES [J].
BARKER, GP .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1981, 39 (AUG) :263-291
[3]   ON THE COMPLETELY POSITIVE AND POSITIVE-SEMIDEFINITE-PRESERVING CONES [J].
BARKER, GP ;
HILL, RD ;
HAERTEL, RD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 56 (JAN) :221-229
[6]  
CRITCHLEY F, UNPUB MULTIDIMENSION
[7]   CONVERGENCE OF THE MAJORIZATION METHOD FOR MULTIDIMENSIONAL-SCALING [J].
DELEEUW, J .
JOURNAL OF CLASSIFICATION, 1988, 5 (02) :163-180
[8]  
DELEEUW J, 1980, MULTIVARIATE ANAL, V5, P502
[9]  
DELEEUW J, 1982, HDB STATISTICS, V2
[10]  
DRESS AW, IN PRESS P WORKSHOP