COMPARISON OF THE LENGTHS OF THE CONTINUED FRACTIONS OF ROOT-D AND 1/2(1+ROOT-D)

被引:10
作者
WILLIAMS, KS [1 ]
BUCK, N [1 ]
机构
[1] COLL NEW CALEDONIA,DEPT MATH,PRINCE GEORGE V2N 1P8,BC,CANADA
关键词
CONTINUED FRACTIONS;
D O I
10.2307/2160208
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let D denote a positive nonsquare integer such that D = 1 (mod 4). Let l(square-root D) (resp. l(1 + square-root D))) denote the length of the period of the continued fraction expansion of square-root D (resp. 1/2(1 + square-root D)). Recently Ishii, Kaplan, and Williams (On Eisenstein's problem, Acta Arith. 54 (1990), 323-345) established inequalities between l(square-root D) and l(1/2(1 + square-root D)). In this note it is shown that these inequalities are best possible in a strong sense.
引用
收藏
页码:995 / 1002
页数:8
相关论文
共 7 条
[1]  
HALTERKOCH F, EINIGE PERIODISCHE K
[2]   ON EISENSTEINS PROBLEM [J].
ISHII, N ;
KAPLAN, P ;
WILLIAMS, KS .
ACTA ARITHMETICA, 1990, 54 (04) :323-345
[3]  
LEVESQUE C, 1986, UTILITAS MATHEMATICA, V30, P79
[4]  
Perron O., 1954, LEHRE KETTENBRUCHEN, V1
[5]  
WILLIAMS HC, 1985, UTILITAS MATHEMATICA, V28, P201
[6]  
[No title captured]
[7]  
[No title captured]