GENERALIZED ELASTICITY THEORY OF QUASI-CRYSTALS

被引:313
作者
DING, DH
YANG, WG
HU, CZ
WANG, RH
机构
[1] Department of Physics, Wuhan University
来源
PHYSICAL REVIEW B | 1993年 / 48卷 / 10期
关键词
D O I
10.1103/PhysRevB.48.7003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The classical theory of elasticity describing three- and lower-dimensional systems is generalized to higher-dimensional spaces. The elastic properties of quasicrystals can be derived from this theory, appropriately. The practical application is given to pentagonal, octagonal, dodecagonal, and icosahedral quasicrystals. The explicit form is obtained for all elastic equations including Hooke's law, equilibrium equation, etc., in all the cases mentioned above.
引用
收藏
页码:7003 / 7010
页数:8
相关论文
共 18 条
[1]   SYMMETRY, STABILITY, AND ELASTIC PROPERTIES OF ICOSAHEDRAL INCOMMENSURATE CRYSTALS [J].
BAK, P .
PHYSICAL REVIEW B, 1985, 32 (09) :5764-5772
[3]   LINEAR ELASTICITY THEORY OF PENTAGONAL QUASI-CRYSTALS [J].
DE, P ;
PELCOVITS, RA .
PHYSICAL REVIEW B, 1987, 35 (16) :8609-8620
[4]   QUASICRYSTALS - A NEW CLASS OF ORDERED STRUCTURES - COMMENT [J].
ELSER, V .
PHYSICAL REVIEW LETTERS, 1985, 54 (15) :1730-1730
[5]   THE SYMMETRY OPERATIONS FOR N-DIMENSIONAL PERIODIC AND QUASI-PERIODIC STRUCTURES [J].
JANSSEN, T .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1992, 198 (1-2) :17-32
[6]  
KATE A, 1986, J PHYS, V47, P181
[7]   ON PERIODIC AND NON-PERIODIC SPACE FILLINGS OF EM OBTAINED BY PROJECTION [J].
KRAMER, P ;
NERI, R .
ACTA CRYSTALLOGRAPHICA SECTION A, 1984, 40 (SEP) :580-587
[8]  
Landau L.D., 1959, THEORY ELASTICITY
[9]   ELASTICITY AND DISLOCATIONS IN PENTAGONAL AND ICOSAHEDRAL QUASICRYSTALS [J].
LEVINE, D ;
LUBENSKY, TC ;
OSTLUND, S ;
RAMASWAMY, S ;
STEINHARDT, PJ ;
TONER, J .
PHYSICAL REVIEW LETTERS, 1985, 54 (14) :1520-1523
[10]  
Lubensky T., 1988, INTRO QUASICRYSTALS, V1, P199