APPLICATION OF MELNIKOV METHOD TO THE REDUCED KDV EQUATION

被引:3
作者
ROESSLER, J
机构
来源
AUSTRALIAN JOURNAL OF PHYSICS | 1991年 / 44卷 / 01期
关键词
D O I
10.1071/PH910015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Melnikov method for estimating distances between invariant manifolds is applied to the perturbed system of ordinary differential equations obtained from the KdV equation, reduced by a travelling wave ansatz and including a diffusion term. The calculation is performed after one integration and the result is compared with numerical work carried out on the full system.
引用
收藏
页码:15 / 32
页数:18
相关论文
共 11 条
  • [1] BIRNIR B, 1988, PHYSICA D, V19, P238
  • [2] Byrd P.F., 1971, HDB ELLIPTIC INTEGRA
  • [3] Gradshteyn I.S., 1965, TABLES OF INTEGRALS
  • [4] GREENHILL AG, 1892, APPLICATIONS ELLIPTI
  • [5] GREENSPAN BD, 1983, NONLINEAR DYNAMICS T, P173
  • [6] Guckenheimer J., 1984, NONLINEAR OSCILLATIO
  • [7] HOLMES P, 1981, ARCH RATION MECH AN, V76, P135
  • [8] WEAK NONLINEAR DISPERSIVE WAVES - DISCUSSION CENTERED AROUND KORTEWEG-DE VRIES EQUATION
    JEFFREY, A
    KAKUTANI, T
    [J]. SIAM REVIEW, 1972, 14 (04) : 582 - +
  • [9] OLVER PJ, 1986, APPLICATIONS LIE GRO
  • [10] SOLVING NONSTIFF ORDINARY DIFFERENTIAL EQUATIONS - STATE OF ART
    SHAMPINE, LF
    WATTS, HA
    DAVENPORT, SM
    [J]. SIAM REVIEW, 1976, 18 (03) : 376 - 411