SPECTRAL LAWS FOR THE COMPRESSIBLE ISOTROPIC TURBULENCE

被引:17
|
作者
SHIVAMOGGI, BK
机构
[1] University of Central Florida, Orlando
关键词
D O I
10.1016/0375-9601(92)90371-R
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Scaling arguments are applied directly to the Navier-Stokes equations with the isentropic-flow stipulation in conjunction with the scale-invariance condition on the mean rate of kinetic energy dissipation to derive the spectral law for the three-dimensional compressible isotropic turbulence when the random sound field is weak. For the special case with isothermal flow, the present result also reduces to the Kadomtsev-Petviashvili spectral law approximately k-2. We Will then address the nature of compressibility effects on the classical turbulent spectrum.
引用
收藏
页码:243 / 248
页数:6
相关论文
共 50 条
  • [1] SPECTRAL STUDY OF WEAKLY COMPRESSIBLE ISOTROPIC TURBULENCE - RESULTS .1.
    BATAILLE, F
    BERTOGLIO, JP
    MARION, JD
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1992, 315 (11): : 1299 - 1305
  • [2] SPECTRAL STUDY OF WEAKLY COMPRESSIBLE ISOTROPIC TURBULENCE - RESULTS .2.
    BATAILLE, F
    BERTOGLIO, JP
    MARION, JD
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1992, 315 (12): : 1459 - 1465
  • [3] ON THE DECAY OF COMPRESSIBLE ISOTROPIC TURBULENCE
    ZEMAN, O
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1991, 3 (05): : 951 - 955
  • [4] Scaling laws of compressible turbulence
    Sun, Bohua
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2017, 38 (06) : 765 - 778
  • [5] Scaling laws of compressible turbulence
    Bohua SUN
    AppliedMathematicsandMechanics(EnglishEdition), 2017, 38 (06) : 765 - 778
  • [6] Scaling laws of compressible turbulence
    Bohua Sun
    Applied Mathematics and Mechanics, 2017, 38 : 765 - 778
  • [7] Adiabatic isotropic turbulence in compressible fluids
    Pais, VA
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1997, 19 (12): : 1819 - 1838
  • [8] Temporal decorrelations in compressible isotropic turbulence
    Li, Dong
    Zhang, Xing
    He, Guowei
    PHYSICAL REVIEW E, 2013, 88 (02):
  • [10] Scaling and intermittency in compressible isotropic turbulence
    Wang, Jianchun
    Gotoh, Toshiyuki
    Watanabe, Takeshi
    PHYSICAL REVIEW FLUIDS, 2017, 2 (05):