ROLE OF THE RAD1 AND RAD10 PROTEINS IN NUCLEOTIDE EXCISION-REPAIR AND RECOMBINATION

被引:105
作者
DAVIES, AA
FRIEDBERG, EC
TOMKINSON, AE
WOOD, RD
WEST, SC
机构
[1] IMPERIAL CANC RES FUND,CLARE HALL LABS,S MIMMS EN6 3LD,HERTS,ENGLAND
[2] UNIV TEXAS,SW MED CTR,DALLAS,TX 75235
[3] UNIV TEXAS,HLTH SCI CTR,CTR MOLEC MED,INST BIOTECHNOL,SAN ANTONIO,TX 78245
关键词
D O I
10.1074/jbc.270.42.24638
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In Saccharomyces cerevisiae, the RAD1 and RADIO genes are involved in DNA nucleotide excision repair (NER) and in a pathway of mitotic recombination that occurs between direct repeat DNA sequences. In this paper, we show that purified Rad1 and Rad10 interact with a synthetic bubble structure and incise the DNA at the 5'-side of the centrally unpaired region. When Rad1-Rad10 and purified XPG protein (the human homolog of yeast Rad2 protein) were co-incubated with the DNA substrate, we observed incisions at both ends of the bubble. This reaction mimics the dual incision step in nucleotide excision repair in vivo. In addition, the recent suggestion that Rad1 can act to resolve Holliday junctions (Habraken, Y., Sung, P., Prakash, L., and Prakash, S. (1994) Nature 371, 531-534), explaining the recombination defect observed in rad1 mutants, has been further investigated. However, using proteins purified in two different laboratories we were unable to show any interaction between Rad1 and synthetic Holliday junctions. The role that Rad1-Rad10 plays in recombination is likely to resemble its activity in NER by acting upon partially unpaired DNA intermediates such as those formed by recombination mechanisms involving single-strand DNA annealing.
引用
收藏
页码:24638 / 24641
页数:4
相关论文
共 30 条
[1]   GENOME REARRANGEMENT IN TOP3 MUTANTS OF SACCHAROMYCES-CEREVISIAE REQUIRES A FUNCTIONAL RAD1 EXCISION REPAIR GENE [J].
BAILIS, AM ;
ARTHUR, L ;
ROTHSTEIN, R .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (11) :4988-4993
[2]   SPECIFIC COMPLEX-FORMATION BETWEEN PROTEINS ENCODED BY THE YEAST DNA-REPAIR AND RECOMBINATION GENES RAD1 AND RAD10 [J].
BAILLY, V ;
SOMMERS, CH ;
SUNG, P ;
PRAKASH, L ;
PRAKASH, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (17) :8273-8277
[3]   YEAST DNA RECOMBINATION AND REPAIR PROTEINS RAD1 AND RAD10 CONSTITUTE A COMPLEX INVIVO MEDIATED BY LOCALIZED HYDROPHOBIC DOMAINS [J].
BARDWELL, AJ ;
BARDWELL, L ;
JOHNSON, DK ;
FRIEDBERG, EC .
MOLECULAR MICROBIOLOGY, 1993, 8 (06) :1177-1188
[4]   SPECIFIC CLEAVAGE OF MODEL RECOMBINATION AND REPAIR INTERMEDIATES BY THE YEAST RAD1-RAD10 DNA ENDONUCLEASE [J].
BARDWELL, AJ ;
BARDWELL, L ;
TOMKINSON, AE ;
FRIEDBERG, EC .
SCIENCE, 1994, 265 (5181) :2082-2085
[5]   STABLE AND SPECIFIC ASSOCIATION BETWEEN THE YEAST RECOMBINATION AND DNA-REPAIR PROTEIN-RAD1 AND PROTEIN-RAD10 INVITRO [J].
BARDWELL, L ;
COOPER, AJ ;
FRIEDBERG, EC .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (07) :3041-3049
[6]   RESOLUTION OF HOLLIDAY JUNCTIONS BY RUVC RESOLVASE - CLEAVAGE SPECIFICITY AND DNA DISTORTION [J].
BENNETT, RJ ;
DUNDERDALE, HJ ;
WEST, SC .
CELL, 1993, 74 (06) :1021-1031
[7]   FORMATION AND RESOLUTION OF RECOMBINATION INTERMEDIATES BY ESCHERICHIA-COLI RECA AND RUVC PROTEINS [J].
DUNDERDALE, HJ ;
BENSON, FE ;
PARSONS, CA ;
SHARPLES, GJ ;
LLOYD, RG ;
WEST, SC .
NATURE, 1991, 354 (6354) :506-510
[8]  
DUNDERDALE HJ, 1994, J BIOL CHEM, V269, P5187
[9]   REMOVAL OF NONHOMOLOGOUS DNA ENDS IN DOUBLE-STRAND BREAK RECOMBINATION - THE ROLE OF THE YEAST ULTRAVIOLET REPAIR GENE RAD1 [J].
FISHMANLOBELL, J ;
HABER, JE .
SCIENCE, 1992, 258 (5081) :480-484
[10]   2 ALTERNATIVE PATHWAYS OF DOUBLE-STRAND BREAK REPAIR THAT ARE KINETICALLY SEPARABLE AND INDEPENDENTLY MODULATED [J].
FISHMANLOBELL, J ;
RUDIN, N ;
HABER, JE .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (03) :1292-1303