Second Hankel determinant for a class defined by modified Mittag-Leffler with generalized polylogarithm functions

被引:2
作者
Pauzi, M. N. M. [1 ]
Darus, M. [1 ]
Siregar, S. [2 ]
机构
[1] Univ Kebangsaan Malaysia, Sch Modelling & Data Sci, Fac Sci & Technol, Bangi 43600, Selangor De, Malaysia
[2] Univ Selangor, Dept Sci & Biotechnol, Fac Engn & Life Sci, Bestari Jaya 45600, Selangor De, Malaysia
来源
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS | 2018年 / 18卷 / 04期
关键词
Hankel determinant; modified Mittag-Leffler function; polylogarithms functions;
D O I
10.22436/jmcs.018.04.06
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, a new generalized derivative operator m(alpha,beta,lambda)(m) is introduced. This operator obtained by using convolution (or Hadamard product) between the linear operator of the generalized Mittag-Leffler function in terms of the extensively-investigated Fox-Wright (p)Psi(q) function and generalized polylogarithm functions defined by m(alpha,beta,lambda)(m) f(z) = f(alpha,beta) f(z) * D-lambda(m) f(z) = z + Sigma(infinity)(n=2) Gamma(beta)n(m)(n + lambda - 1)!/Gamma[alpha(n - 1) + beta]lambda!(n - 1)! a(n)z(n), where in m is an element of N-0 = {0,1,2, 3, . . .} and min{ Re (alpha), Re (beta)1 > 0. By making use of m(alpha,beta,lambda)(m) f(z), a class of analytic functions is introduced. The sharp upper bound for the nonlinear vertical bar a(2)a(4) - 4(3)(2)vertical bar (also called the second Hankel functional) is obtained. Relevant connections of the results presented here with those given in earlier works are also indicated.
引用
收藏
页码:453 / 459
页数:7
相关论文
共 21 条
[1]  
Abubaker A., 2011, INT J PURE APPL MATH, V69, P429
[2]   HANKEL DETERMINANT FOR CERTAIN CLASS OF ANALYTIC FUNCTION DEFINED BY GEBERALIZED DERIVATIVE OPERATOR [J].
Al-Abbadi, Ma 'moun Harayzeh ;
Darus, Maslina .
TAMKANG JOURNAL OF MATHEMATICS, 2012, 43 (03) :445-453
[3]  
Al-Refai Oqlah, 2009, EUR J SCI RES, V28, P234
[4]  
Al-Shaqsi K., 2008, J MATH STAT, V4, P46
[5]   Upper bound of second Hankel determinant for a new class of analytic functions [J].
Bansal, Deepak .
APPLIED MATHEMATICS LETTERS, 2013, 26 (01) :103-107
[6]   POWER SERIES WITH INTEGRAL COEFFICIENTS [J].
CANTOR, DG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1963, 69 (03) :362-&
[7]   The Hankel determinant of exponential polynomials [J].
Ehrenborg, R .
AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (06) :557-560
[8]  
Fekete M., 1933, J LOND MATH SOC, V2, P85, DOI [10.1112/jlms/s1-8.2.85, DOI 10.1112/JLMS/S1-8.2.85]
[9]  
Grenander U., 1958, TOEPLITZ FORMS THEIR
[10]  
Janteng A., 2006, J INEQUALITIES PURE, V7