ON CONTROLLABILITY AND OBSERVABILITY OF IMPLICIT SYSTEMS

被引:20
作者
FRANKOWSKA, H [1 ]
机构
[1] UNIV PARIS 09,CTR ETUD & RECH MATEMAT DEV,F-75775 PARIS,FRANCE
关键词
controllability; Descriptor system; differential inclusion; duality; implicit control system; linear process; observability;
D O I
10.1016/0167-6911(90)90016-N
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We apply differential inclusion techniques to investigate controllability and observability of descriptor systems. In particular we derive an analogue of rank condition for singular systems and prove duality of controllability and observability by trajectories without jumps. © 1990.
引用
收藏
页码:219 / 225
页数:7
相关论文
共 15 条
[1]  
ARMENTANO VA, 1984, 23RD P IEEE C DEC CO, P1507
[2]  
Aubin J.P., 1990, SET VALUED ANAL SYST, V2
[3]  
Aubin J.-P., 1984, GRUNDLEHREN MATH WIS, V264
[4]   CONTROLLABILITY OF CONVEX PROCESSES [J].
AUBIN, JP ;
FRANKOWSKA, H ;
OLECH, C .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1986, 24 (06) :1192-1211
[5]  
AUBIN JP, 1984, APPLIED NONLINEAR AN
[6]  
Campbell S. L., 1982, SINGULAR SYSTEMS DIF
[7]  
CHpbe1l S.L., 1980, SINGULAR SYSTEMS DIF
[8]   CONTROLLABILITY, OBSERVABILITY, AND DUALITY IN SINGULAR SYSTEMS [J].
COBB, D .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1984, 29 (12) :1076-1082
[10]  
Filippov AF., 1967, SIAM J CONTROL, V5, P609